

www.FirstRanker.com

Code No: RT32042

SET - 1

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL SIGNAL PROCESSING

	(Electronics and Communication Engineering)	
Ti	me: 3 hours Max. Marks	: 70
	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-Ais compulsory 3. Answer any THREE Questions from Part-B <pre>*****</pre>	
	<u>PART –A</u>	
a)	What are the elementary discrete time signals?	[3M]
b)	Find the IDFT of Y (k) = $(1, 1, 1, 0)$	[4M]
c)	State the properties of ROC.	[4M
d)	Why IIR filters do not have linear phase?	[3M]
e) f)	Explain how a multi-rate system is different from a single-rate system? Explain the basic architectural features of programmable DSP devices.	[4M] [4M]
1)	PART -B	[+11]
a)	Find the periodicity of the signal $x(n) = \sin (2\pi n / 3) + \cos (\pi n / 2)$	[4M]
b)	Explain the frequency response of discrete time system.	[8M]
c)	What is the causality condition for an LTI system?	[4M]
,		
a)	Find the DFT of $x[n] = a^n$ for $0 \le n \le 3$	[8M]
b)	= 0 otherwise. Find the linear convolution of the sequences $x[n] = \{1,4,0,9,-1\}$ and $h[n] = \{-3,-4,0,7\}$	[8M]
a)	State and prove any three properties of Z- Transform.	[8M]
b)	Obtain direct form I, direct form II and cascade realizations of system described by the equation, $y[n]=y[n-1]-(1/2)y[n-2]+x[n]-x[n-1]+x[n-2]$	[8M]
a)	Determine the system function $H(Z)$ of the lowest order Chebyshev digital filter that meets the following specifications.	[8M]
	i) 3 db ripple in the passband $0 \le \omega \le 0.3\pi$	
	ii) At least 40 dB attenuation in the stopband $0.35\pi \le \omega \le \pi$. Use the bilinear transformation.	
b)	Explain the need for the use of window sequence in the design of FIR filter. Describe the window sequence generally used and compare the properties.	[8M]
a)	What is Interpolation? Explain about the frequency domain description of an Interpolator.	[8M]
b)	What do you mean by fractional sampling rate conversion? Explain with an example of converting 48 kHz signal to 44.1 kHz signal using multi-stage fractional sampling rate converter.	[8M]
a)	Discuss in detail the Basic Architectural features of programmable DSP devices,	[8M]

b) Discuss in detail the Pipeline Operation of TMS320C54XX Processors. [8M]

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32042

SET - 2

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL SIGNAL PROCESSING

Electronics and Communication Engineering)

Time: 3 hours

(Electronics and Communication Engineering)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1	a)	Define discrete time signal and give examples.	[3M]
	b)	What are the advantages FFT over DFT.	[4M]
	c)	What are the different methods of evaluating inverse z transform?	[3M]
	d)	Draw the indirect form realizations of FIR systems?	[4M]
	e)	Derive transfer function of an Interpolator.	[4M]
	f)	Discuss about the various sources of errors in the computation using DSP processor implementations.	[4M]
		<u>PART -B</u>	
2	a)	Discuss the frequency domain representation of linear time-invariant systems.	[8M]
	b)	Determine the frequency response for the system given by	[8M]
	- /	y(n)-3/4y(n-1)+1/8 y(n-2) = x(n)-x(n-1)	[]
3	a)	Find the DFT of the sequence $x[n] = \{1,2,1,2,1,2,1,2\}$ using decimation in time	[8M]
		algorithm.	
	b)	State and prove any four Properties of discrete Fourier series.	[8M]
4	a)	With respect to Z transforms define the properties of ROC.	[8M]
т	b)	Obtain the parallel form realization for the IIR system described by the transfer	[8M]
	- /	function $H(z) = \frac{3+3.6z^{-1}+0.6z^{-2}}{1+0.1z^{-1}-0.2z^{-2}}$.	[]
5		Convert the following analog transfor function in to digital using hilinger transform	[0] 1]
5	a)	Convert the following analog transfer function in to digital using bilinear transform	[8M]
		and IIT methods with T=1sec $H(s) = \frac{s}{(s+3)(s+9)}$	
	b)	Design a HPF of length 7 with cut off frequency of 2 rad/sec using Hamming window	[8M]
6	a)	With necessary derivations explain the operation of sampling rate conversion by a	[8M]
	,	factor of I/D in both frequency and time domains.	
	b)	What are the applications of multirate digital signal processing?	[8M]
7	a)	Explain the various pipeline programming models that are adapted in DSP	[8M]
	b)	processors.	[0] 1]
	b)	Explain the Bus Architecture of DSP Processor.	[8M]

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32042

SET - 3

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 **DIGITAL SIGNAL PROCESSING**

Time: 3 hours

(Electronics and Communication Engineering)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-Ais compulsory

3. Answer any THREE Questions from Part-B

PART-A

1	a)	Determine whether the following system given by $y(n) = \log 10[\{x(n)\}]$ is Casual or not.	[3M]
	b)	What are the properties of convolution sum?	[4M]
	c)	List the applications of Z – transforms.	[3M]
	d)	Compare Chebyshev Filter and Butterworth Filter.	[4M]
	e)	Derive transfer function of Decimator.	[4M]
	f)	What are the functional units present in the TMS320C54XX processor?	[4M]
		<u>PART -B</u>	
2	a)	Consider a signal $x[n] = (-a)^{-n} u[n]$ determine the spectrum X(w).	[8M]
	b)	Determine the response of Second order Discrete Time system governed by the difference equation $y(n)-2y(n-1)-3y(n-2)=x(n)+4x(n-1)$, $n\geq 0$,when the input signal is $x(n)=2^nu(n)$, with initial conditions $y(-2)=0,y(-1)=5$.	[8M]
3	a)	Explain the significance of FFT algorithms. Draw the basic butterfly diagram for radix - 2 DIT-FFT.	[8M]
	b)	Find the DFT of $x[n] = \{0.5, 0.5, 0.5, 0.5, -1, -1, -1\}$ using decimation in time algorithm.	[8M]
4	a)	Find the Z-Transform $x[n] = (\frac{1}{3})^n Sin[\frac{\pi}{4}n]u[n].$	[8M
	b)	Realize $H(z) = \frac{1+0.6z^{-2}+0.2z^{-1}}{3+5z^{-1}+4^{-2}}$ using Direct form I and Direct form II structures	[8M
5	a)	Distinguish between "maximally flat magnitude response" and "equiripple magnitude response" filters.	[8M
	b)	Explain the impulse invariance method of IIR filter design.	[8M
6	a)	Explain the concept of multi rate signal processing along with two applications of it	[8M
	b)	Explain how sampling rate conversion of band pass signals can be achieved.	[8M
7	a)	Explain in detail the circular addressing mode and bit-reversed addressing mode.	[8M
	b)	Explain Memory Access schemes in DSPs.	[8M

www.FirstRanker.com

Code No: RT32042

www.FirstRanker.com

www.FirstRanker.com

(R13

SET - 4

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL SIGNAL PROCESSING

		(Electronics and Communication Engineering)	
	Ti	me: 3 hours Max. Marks:	70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B 	
		<u>PART –A</u>	
1	a)	Determine whether the system defined by $y(n) = x(-n^2-2)$ is time invariant or not.	[3M]
	b)	What is FFT? How many multiplications and additions are required to compute N point DFT using redix-2 FFT?	[4M]
	c)	State and prove Parsvel's theorem.	[4M]
	d)	Why FIR filters are always stable?	[4M]
	e)	What is Down sampling?	[3M]
	f)	Explain the role of on-chip peripherals for programmable digital signal processors. <u>PART -B</u>	[4M]
2	a)	For each case determine the system is stable or causal i) $h(n) = \sin (\pi n / 2)$ ii) $h(n) = \delta(n) + \sin \pi n$ iii) $h(n) = 2 n u(-n)$	[10M]
	b)	Show that an LTI system can be described by its unit sample response.	[6M]
3	a)	State and prove convolution Properties of DFT.	[8M]
	b)	Compute the DFT for the sequence (0.5,0.5,0.5,0.5,1,1,1,1) using DIF-FFT	[8M]
4	a)	Find the Inverse Z-Transform of $X(z) = (1 - z^{-1})(1 + 2z^{-1})$, $ z > 2$ using partial fractions method.	[8M
	b)	method. Obtain the cascade form realization for the recursive IIR system described by the	[8M
	b)	transfer function $H(z) = \frac{3+3.6z^{-1}+0.6z^{-2}}{1+0.1z^{-1}-0.2z^{-2}}$.	
5	a)	Explain the design procedure for IIR filters using Butterworth approximations.	[8M
	b)	A low pass filter is to be designed with the following desired frequency response.	[8M
		$\begin{split} H_d(e^{jw}) &= e^{-j2w}, \ -\pi/4 \leq \ \omega \leq \pi/4 \\ 0, \qquad \pi/4 \leq \omega \leq \pi \end{split} \\ \text{Determine the filter coefficients $h_d(n)$ if the window function is defined as $\omega(n) = 1$, $0 \leq n \leq 4$} \\ 0, $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	

Also determine the frequency response $H(e^{jw})$ of the designed filter.

1 of 2

www.FirstRanker.com

Code No: RT32042

R13

SET - 4

- 6 a) With the help of an example define Decimation and Interpolation operations in DSP. [8M]
 - b) A signal, x(n), at a sampling frequency of 2.048 kHz is to be decimated by a factor of [8M] 32 to yield a signal at a sampling frequency of 64 Hz. The signal band of interest extends from 0 to 30 Hz. The anti-aliasing digital filter should satisfy the following specifications:

Pass band deviation	0.01 dB		
Stop band deviation	80dB		
Pass band	0-30Hz		
Stop band	32-64 Hz		
The signal components in the range from 30 to 32 Hz should be protected from			
aliasing. Design a suitable two stage decimator.			

- 7 a) What is the difference between internal and external modes of clocking of [8M] TMS320C54XX Processor?
 - b) Explain different pipeline programming models that are adapted in DSP processors? [8M]

