

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32272



## III B. Tech II Semester Regular/Supplementary Examinations, April - 2018 PETROLEUM RESERVOIR ENGINEERING-I

Time: 3 hours

(Petroleum Engineering)

15)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A**is compulsory

3. Answer any **THREE** Questions from **Part-B** 

## PART –A

| 1 | a) | Define the main categories of hydrocarbon recovery.     | [3M] |
|---|----|---------------------------------------------------------|------|
|   | b) | Define and derive gas formation volume factor.          | [4M] |
|   | c) | What are the types of primary recovery mechanism?       | [3M] |
|   | d) | State and explain Darcy's law.                          | [4M] |
|   | e) | List out the assumptions made for radial cell geometry. | [4M] |
|   | f) | Explain apparent skin factor.                           | [4M] |

## PART -B

2 a) A volumetric gas reservoir has the following production history.

[12M]

| Time, t | Reservoir pressure, p |       | Cumulative production, G |  |
|---------|-----------------------|-------|--------------------------|--|
| years   | psia                  | z     | MMMsct                   |  |
| 0.0     | 1798                  | 0.869 | 0.00                     |  |
| 0.5     | 1680                  | 0.870 | 0.96                     |  |
| 1.0     | 1540                  | 0.880 | 2.12                     |  |
| 1.5     | 1428                  | 0.890 | 3.21                     |  |
| 2.0     | 1335                  | 0.900 | 3.92                     |  |

The following data is also available:

$$\begin{split} \varphi &= 13\% \\ S_{wi} &= 0.52 \\ A &= 1060 \text{ acres} \\ h &= 54 \text{ ft.} \\ T &= 164^\circ F \end{split}$$

Calculate the gas initially in place volumetrically.

- b) With the necessary assumptions, Explain the step by step procedure for the gas [4M] compressibility equation.
- 3 a) Explain the application of PVT parameters to relate surface to reservoir [10M] hydrocarbon volumes; below bubble point pressure.
  - b) The oil and gas rates, measured at a particular time during the producing life of [6M] a reservoir are, x stb oil/day and y scf gas/day. What is the corresponding underground withdrawal rate in reservoir barrels/day?
- 4 a) Write down the material balance equation in generalized form. List out the [4M] applications of material balance equation in reservoir engineering.

1 of 2



www.FirstRanker.com

Code No: RT32272

b) A combination-drive reservoir contains 10 MMSTB of oil initially in place. [12M] The ratio of the original gas-cap volume to the original oil volume, i.e., m, is estimated as 0.25. The initial reservoir pressure is 3000 psia at 150°F. The reservoir produced 1 MMSTB of oil, 1100 MMscf of 0.8 specific gravity gas, and 50,000 STB of water by the time the reservoir pressure dropped to 2800 psi. The following PVT is available:

|                          | 3000 psi | 2800 psi |  |
|--------------------------|----------|----------|--|
| Bo, bbl/STB              | 1.58     | 1.48     |  |
| R <sub>s</sub> , scf/STB | 1040     | 850      |  |
| B <sub>g</sub> , bbl/scf | 0.00080  | 0.00092  |  |
| B <sub>t</sub> , bbl/STB | 1.58     | 1.655    |  |
| B <sub>w</sub> , bbl/STB | 1.000    | 1.000    |  |

The flowing data also available

 $S_{wi} = 0.20$   $c_w = 1.5 \times 10^{-6} \text{ psi}^{-1}$   $c_f = 1 \times 10^{-6} \text{ psi}^{-1}$ 

Calculate:

5

i) Cumulative water influx ii) Net water influx iii) Primary driving indexes at 2800 psi.

i) What is the conversion factor between k, expressed in Darcies, and in cm<sup>2</sup> [16M] and metre<sup>2</sup>, respectively?

ii) Convert the full equation for the linear flow of an incompressible fluid, which in Darcy units is

$$q = -\frac{kA}{\mu} \left( \frac{dp}{dl} + \frac{\rho \hat{g}}{1.0133 \times 10^5} \frac{dz}{dl} \right)$$

To field units.

- 6 Derive partial differential equation for the radial flow of any single phase fluid [16M] in a porous medium.
- 7 Derive the radial diffusivity equation of a well under semi steady state [16M] condition.

\*\*\*\*

2 of 2

www.FirstRanker.com