R13

SET - 1

III B. Tech II Semester Supplementary Examinations, November -2018
 GEOTECHNICAL ENGINEERING - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

\section*{PART -A}

1 a) What is Percussion drilling?
b) Write the formula to determine the factor of safety of a dry infinite slope made of
cohesion less soil, and explain the terms in it.
c) Explain the situations in which a combined footing is adopted?
d) What are the types of settlements?
e) Classify pile foundations.
f) Draw the typical vertical cross section of a well foundation and label its parts?

PART -B

2 a) Explain the direct, semi-direct and indirect methods of soil exploration?
b) Compute the area ratio of a thin walled tube sampler having an external diameter of 6 cm and a wall thickness of 2.25 mm . Would you recommend the sampler for obtaining undisturbed soil samples? Why?

3 a) Derive the expression to determine the stability number of a slope?
b) A canal 3 m deep runs through a soil having the following properties $\mathrm{c}_{\mathrm{u}}=10 \mathrm{kPa}$, $\Phi_{\mathrm{u}}=100, \mathrm{e}=0.80, \mathrm{G}=2.72$. The angle of slope of the banks is $\beta=45^{\circ}$. Determine the factors of safety with respect to cohesion, when the canal is full up to the top of the banks, and when there is a sudden drawdown?

β	\$. 5	Taylor's Stability number
45^{0}	10°	0.11
	$4.89{ }^{0}$	0.15

4 a) Explain the IS code method to determine the bearing capacity?
b) Calculate the safe bearing capacity of a strip footing, 1 m wide, in a soil with $\gamma=18 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{c}=20 \mathrm{kN} / \mathrm{m}^{2}$, and $\emptyset=20^{\circ}$, at a depth of 1 m . Terzaghi's bearing capacity factors may be assumed as $\mathrm{N}_{\mathrm{c}}=8.682, \mathrm{~N}_{\mathrm{q}}=2.256, \mathrm{~N}_{\gamma}=4.16$. Factor of safety against shear failure $=3.0$

5 a) Explain the Load-Settlement curves or pressure-settlement curves from the plate load test?
b) Two load tests were conducted at a site, one with a 0.50 m square test plate and the other with a 1.0 m square test plate. For a settlement of 25 mm , the loads were found to be 55 kN and 190 kN , respectively in the two tests. Determine the allowable bearing pressure of the sand and the load which a square footing, $2 \mathrm{~m} \times 2 \mathrm{~m}$, can carry with the settlement not exceeding 25 mm .

6 a) Explain the procedure to determine the load carrying capacity of a pile group using the static formula?
b) Discuss the types of Piles and their structured characteristics with uses.

7 a) Write a note on the components of a well foundation?
b) A bridge 120 m long, is to be constructed over a river having $\mathrm{Q}_{\max }=2418 \mathrm{~m}^{3} / \mathrm{s}$, HFL $=81.17 \mathrm{~m} ;$ LWL $=73.00 \mathrm{~m}$ and existing bed level $=72.00 \mathrm{~m}$. The subsoil consists of loose silty sand layer $\left(\mathrm{N}_{\text {corrected }}=10\right), 3.50 \mathrm{~m}$ thick, underlain by a thick stratum of medium to coarse sand $\mathrm{N}_{\text {corrected }}=24$). Determine the founding level of a 4.50 m diameter abutment well. The weighted mean diameter of the bed material up to relevant depth is 0.275 mm , and permissible settlement is 45 mm .

