

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32054

SET - 1

III B. Tech II Semester Supplementary Examinations, November -2018 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Computer Science Engineering and Information Technology)

Time: 3 hours		Max. Marks: 70
	Note: 1 Question Paper consists of two parts (Part-A and Part-B)

- ote: 1. Question Paper consists of two parts (Part-A and Part-I
 - 2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART –A

		IARI -A	
1	a)	Using step count find the time complexity of sum of 'n' natural numbers	[3M]
	b)	Write the control abstraction for divide and conquer.	[4M]
	c)	Give the problem formulation of Knapsack problem using greedy method.	[4M]
	d)	Prove that dynamic programming constructs solution in bottom up approach.	[4M]
	e)	Write about the constraints and criterion function used in backtracking.	[4M]
	f)	What is bounding function? Give example.	[3M]
		<u>PART –B</u>	
2	a)	Explain the role of instance characteristics in finding the time and space complexities with an example.	[8M]
	b)	In what way amortized analysis is used for performance analysis of algorithms? Explain.	[8M]
3	a)	For $T(n)=7T(n/2)+18n^2$ Solve the recurrence relation and find the time complexity.	[8M]
	b)	Given 2 sorted lists of numbers. Write the algorithm to merge them and analyze its time complexity.	[8M]
4	a)	A motorist wishing to ride from city A to B. Formulate greedy based algorithms to generate shortest path and explain with an example graph.	[8M]
	b)	What is the solution generated by function Job Sequencing algorithm when n=6	[8M]

- b) What is the solution generated by function Job Sequencing algorithm when n=6 [8M] (P1...p6) = (3, 5, 20, 18, 1, 6), and (d1..d6) = (1, 3, 4, 3, 2, 1).
- 5 a) Write a function to compute lengths of shortest paths between all pairs of nodes [8M] for the given adjacency matrix.
 - $\left(\begin{array}{ccc}
 0 & 6 & 13 \\
 8 & 0 & 4 \\
 5 & \infty & 0
 \end{array}\right)$
 - b) Let the dimensions of A,B,C,D respectively be 10X5, 5X15, 15X8, 8X20 generate [8M] matrix product chains that produces minimum number of matrix multiplications using dynamic programming.

1 of 2

www.FirstRanker.com

- 6 Relate Hamiltonian cycle with travelling sales person problem and also give the [8M] a) backtracking solution vector that finds all Hamiltonian cycles for any directed or undirected graph.
 - Draw the portion of state space tree generated by recursive backtracking algorithm [8M] b) for sum of subsets problem with an example.
- 7 Write the branch and bound algorithm to generate minimum length tour for the [16M] given cost adjacency matrix.

2 of 2