R13

SET - 1

III B. Tech II Semester Supplementary Examinations, November -2018 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to Computer Science Engineering and Information Technology)

PART -A

1 a) Using step count find the time complexity of sum of ' n ' natural numbers
b) Write the control abstraction for divide and conquer.
c) Give the problem formulation of Knapsack problem using greedy method.
d) Prove that dynamic programming constructs solution in bottom up approach.
e) Write about the constraints and criterion function used in backtracking.
f) What is bounding function? Give example.

PART -B

2 a) Explain the role of instance characteristics in finding the time and space complexities with an example.
b) In what way amortized analysis is used for performance analysis of algorithms? Explain.
a) For $T(n)=7 T(n / 2)+18 n^{2}$ Solve the recurrence relation and find the time complexity.
b) Given 2 sorted lists of numbers. Write the algorithm to merge them and analyze its time complexity.

4 a) A motorist wishing to ride from city A to B . Formulate greedy based algorithms to generate shortest path and explain with an example graph.
b) What is the solution generated by function Job Sequencing algorithm when $\mathrm{n}=6$ $(\mathrm{P} 1 \ldots \mathrm{p} 6)=(3,5,20,18,1,6)$, and $(\mathrm{d} 1 . . \mathrm{d} 6)=(1,3,4,3,2,1)$.
a) Write a function to compute lengths of shortest paths between all pairs of nodes
for the given adjacency matrix.
$\left(\begin{array}{ccc}0 & 6 & 13 \\ 8 & 0 & 4 \\ 5 & \infty & 0\end{array}\right)$
b) Let the dimensions of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively be $10 \mathrm{X} 5,5 \mathrm{X} 15,15 \mathrm{X} 8,8 \mathrm{X} 20$ generate matrix product chains that produces minimum number of matrix multiplications using dynamic programming.

1 of 2

6 a) Relate Hamiltonian cycle with travelling sales person problem and also give the backtracking solution vector that finds all Hamiltonian cycles for any directed or undirected graph.
b) Draw the portion of state space tree generated by recursive backtracking algorithm for sum of subsets problem with an example.

7 Write the branch and bound algorithm to generate minimum length tour for the given cost adjacency matrix.
$\left[\begin{array}{ccccc}\infty & 18 & 28 & 8 & 9 \\ 13 & \infty & 14 & 2 & 1 \\ 1 & 3 & \infty & 1 & 2 \\ 17 & 4 & 16 & \infty & 1 \\ 14 & 2 & 5 & 16 & \infty\end{array}\right]$

