

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32042

R13

SET - 1

III B. Tech II Semester Supplementary Examinations, November -2018 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any THREE Questions from Part-B

PART -A

1	a)) Test the gi	ven system for tim	e invariance :	$y(n) = n x(n). ag{3}$	3M]	
---	----	---------------	--------------------	----------------	-------------------------	-----	--

Find the Z-transform of
$$x(n) = (1/8)^n u(n)$$
 and its ROC. [4M]

d) Draw the direct form structure of
$$y(n) = \sum_{k=0}^{N-1} h[k]x[n-k]$$
 [4M]

e) What is the significance of Multirate Signal processing? What are the applications [3M]

f) What are the differences between fixed point processors and floating point [4M] Processors?

PART-B

2 a) Find the solution to the following linear constant coefficient difference equation with [8M] initial conditions y(-1)=4 and y(-2)=10

$$y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = \left(\frac{1}{2}\right)^n \text{ for } n \ge 0$$

b) Explain the frequency domain representation of Discrete time signals [8M]

3 a) Given $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, find X(k) using DIF FFT algorithm. [8M]

b) State and prove time – shifting and time scaling property of DFT. [8M]

4 a) Determine the ZT of $x[n] = -na^n u [-n-1]$. [8M]

b) What are the basic structures of FIR systems? Explain [8M]

5 a) What are the effects of windowing? Comparing various windowing techniques. [8M]

b) Design a High Pass FIR filter whose cut-off frequency is 1.2 radians/sec and N = 9 [8M] using Hamming Window.

6 a) Derive the frequency domain representation of decimator. [8M]

b) Explain the following terms: i) Up – sampling ii) Down- sampling [8M]

7 a) What is MAC? Explain its operation in detail. [8M]

b) Explain about Special addressing modes [8M]
