

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32043

R13

SET - 1

III B. Tech II Semester Supplementary Examinations, November - 2018 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Define quantization noise.	[3M]			
	b)	Draw the BASK waveform for the data 1 0 1 1 1 0 1 0 1, using bipolar signaling.	[4M]			
	c)	Give the expression for minimum probability of error of a matched filter.	[3M]			
	d)	Define i) Information ii) Information rate.	[4M]			
	e)	What is the tradeoff between bandwidth and SNR.	[4M]			
	f)	List different types of channel codes.	[4M]			
	PART -B					
2	a)	Find a signal $g(t)$ that is band-limited to B Hz and whose samples are	[8M]			
		$g(0) = 1$ and $g(\pm T_s) = g(\pm 2T_s) = g(\pm 3T_s) = \dots = 0$				
		where the sampling interval T_s is the Nyquist interval for $g(t)$, that is, $T_s = \frac{1}{2R}$.				
	b)	Draw the block diagram of PCM system and explain.	[8M]			
3	a)	Draw the block diagram of coherent binary PSK detector and explain its operation.	[8M]			
	b)	Explain the process of differential encoding and detection of binary DPSK with the following data: [1 0 1 0 0 1 1 1 0 0].	[8M]			
		following data. [1 0 1 0 0 1 1 1 0 0].				
4	a)	Plot and compare the probability of error for the non-coherent detection of binary	[8M]			
		ASK and binary FSK.				
	b)	Explain the operation of integrate-and-dump filter.	[8M]			
_			503.53			
5	a)	A memoryless source emits 0.3, 0.25, 0.15, 0.12, 0.1, and 0.08. Find the entropy of	[8M]			
	b)	this source. Define the following:	[8M]			
	0)	i) Amount of information	[OIVI]			
		ii) Average information				
		iii) Mutual information				
		iv) Information rate				

1 of 2

www.FirstRanker.com

www.FirstRanker.com

SET - 1 R13 Code No: RT32043

6 a) A source emits seven messages with probabilities 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, [8M] and 1/64, respectively. Obtain the Huffman code and find the average length of the codeword.

Write notes on Shanon-Fano coding. b)

[8M]

7 The decoding table for the single-error correcting (7, 4) code is given in Table. a) [8M] Determine the data vectors transmitted for the following received vectors r:

- i) 1101101
- ii) 0101000
- iii) 0001100

,			
	e	S	
	1000000	110	
	0100000	011	
	0010000	111	
	0001000	101	
	0000100	100	
	0000010	010	
	0000001	001	
on Viterbi algorithm.			
MMKIRSK	OL K**	***	

b) Write notes on Viterbi algorithm. [8M]

2 of 2