

Code No: **RT41046**

R13

Set No. 1

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 ANALOG IC DESIGN

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

		PART-A (22 Marks)	
1.	a)	Define sheet resistance.	[4]
	b)	Define sensititvity of a voltage reference.	[4]
	c)	Classify output amplifiers.	[4]
	d)	Define slewrate and derive an expression for it.	[4]
	e)	What is autozeroing technique?	[3]
	f)	Explain how skew reduction is done using PLL.	[3]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	Discuss about various capacitances in a MOSFET and derive relation between	
		them.	[8]
	b)	Derive the sub threshold MOS model and explain about it.	[8]
3.	a)	Draw and analyze cascode current mirror.	[8]
	b)	Explain about the effect of temperature of voltage references.	[8]
4.	a)	Explain the operation of active load inverter.	[8]
	b)	Using small signal model derive an expression for voltage gain of a differential	
	ŕ	amplifier.	[8]
5.	a)	Explain the miller compensation in two stage op-amps.	[8]
	b)	Discuss the operation of folded cascade op-amp.	[8]
	-,	- 133 1133 1134 3F 1131 113 1 F 1131 F	[-]
6.	a)	What is a comparator? Explain the static and dynamic characteristics of a comparator.	[8]
	b)	Find the propagation delay of a open loop comparator having a dominant pole at	L-3
		10^3 rad/s, a DC gain of 10^4 , a slewrate of $1V/\mu S$, and a binary output swing of	
		1V. Assume applied voltage is 10mV.	[8]
7.	a)	Discuss about non ideal effects in PLL.	[8]
	b)	Explain the operation of cross coupled oscillator.	[8]