IV B.Tech I Semester Supplementary Examinations, February/March - 2018
OPTICAL COMMUNICATION
(Electronics and Communication Engineering)

Time: 3 hours

> Question paper consists of Part-A and Part-B
> Answer ALL sub questions from Part-A Answer any THREE questions from Part-B
> $* * * * *$

Max. Marks: 70

PART-A (22 Marks)

1. a) Mention the four advantages of OFC.
b) Write about micro bending and macro bending losses.
c) Differentiate the splicer and connector.
d) Discuss the concept of spontaneous emission in LED.
e) Write a brief notes on equilibrium numerical aperture.
f) What is WDM and explain its significance.

PART-B $(3 x 16=48$ Marks $)$

2. a) A multimode step index fiber has a relative refractive index difference of 1% and core refractive index of 1.5 . The number of modes operating at a wavelengthof 1.3μ meteris 1100 . Estimate the diameter of the fiber core.
b) Explain group delay and mode delay factor with reference to single mode fibers showing the relevant graph.
3. a) Explain the scattering and bending losses in optical fibers.
b) Give an account of cut off wavelength for single mode and multi mode fibers and discuss its dependence on fiber length.
4. a) Describe the connector return loss in an optical fiber.
b) Explain the following briefly (i) Single mode fiber joint (ii) Multimode fiber joint
5. a) Sketch and explain the fabry-petrot resonator cavity of a laser diode.
b) A GaAs laser operating at 850 nm and $450 \mu \mathrm{~m}$ length and refractive index $\eta=3.5$. What are the frequency and wavelength spacing? If the half power point, λ $\lambda \mathrm{o}=2.5 \mathrm{~nm}$, what is the spectral width σ of the gain?
6. a) With a schematic diagram explain the working of optical receiver.
b) Discuss the possible sources of noise in optical receivers.
7. a) Explain the significance of power budget and system margin.
b) Following are the parameters of a point-to-point optical link: (i) Optical power launched: +5 dBm (ii) sensitivity of detector : -30 dBm (iii) Source/detector connector loss : 1 dB (iv) Length of optical cable : 55 km (v) Cable attenuation : $0.3 \mathrm{~dB} / \mathrm{km}$ (vi) Jumper cable loss : 2.5 dB (vii) Connector loss at each fiber joint : 1dB Assume two jumper cables and two cable joints. Compute the power margin of the line
