

www.FirstRanker.com

www.FirstRanker.com





Code No: **R41024** 

Time: 3 hours

## IV B.Tech I Semester Supplementary Examinations, February/March - 2018 POWER SYSTEM OPERATION AND CONTROL

(Electrical and Electronics Engineering)

Max. Marks: 75

## Answer any FIVE Questions All Questions carry equal marks \*\*\*\*\*

- 1 a) Define the following
  - i) Heat rate curve,
  - ii) Cost curve
  - iii) Production cost

- [6]
- b) Three power plants of a total capacity of 425 MW are scheduled for operation to supply a total load of 310 MW. Determine the optimum generation scheduling if the plants having the following characteristics

$$\frac{dC_1}{dP_1} = 30 + 0.15P_1, \ 25 \le P_1 \le 125; \qquad \frac{dC_2}{dP_2} = 40 + 0.2P_2, \ 30 \le P_2 \le 100$$
  
and  $\frac{dC_3}{dP_3} = 15 + 0.18P_3, \ 50 \le P_3 \le 200.$  [9]

2 A system having two plants 1 and 2 connected to buses 1 and 2 respectively as shown in below figure 2. There are two loads and a network of four branches. The ref bus with a voltage of  $1.0 \angle 0^\circ$  p.u is shown on the diagram. The branch currents and impedances are :

| currents and impedances are      |                                          |
|----------------------------------|------------------------------------------|
| $I_a = 3 - j \ 0.8 \ p.u.$       | $Z_a = 0.01 + j \ 0.03 \ p.u$            |
| $I_b = 1.2 - j \ 0.3 \ p.u$      | $Z_b = 0.015 + j 0.06 \text{ p.u.}$      |
| $I_c = 1 - j \ 0.2 \ .u.$        | $Z_{\rm c} = 0.01 + j 0.04 \text{ p.u.}$ |
| $I_d = 2.6 - j 0.9 \text{ p.u.}$ | $Z_d = 0.01 + j 0.04 p.u$                |
|                                  | -R-ar                                    |
| d b)                             | plant-2                                  |
| Plant                            |                                          |
| $\sim$                           | 122                                      |
| YII                              | 2                                        |
| 1 Juion                          | Le T                                     |
| af                               | d d                                      |
| 3 - 1 9.06.60                    | 3 - 5                                    |
| VIS                              |                                          |
| 1 b                              | 4                                        |
| 4                                |                                          |
| ×                                |                                          |

Figure 2

[15]

[5]

3 a) What is the need of hydro –thermal coordination?

Determine the B- coefficients of the system.

## www.FirstRanker.com



www.FirstRanker.com

www.FirstRanker.com

## Code No: **R41024**





|   | b) | A load is feeded by two plants, one is thermal and other is a hydro plant. The load is located near the thermal plant. The characteristics of the plants are $F_T = 0.04P_T^2 + 30P_T + 20$ Rs/hr, $w_H = 0.0012P_H^2 + 7.5P_H$ m <sup>3</sup> /Sec $\gamma_H = 2.5 \times 10^{-3}$ Rs/m <sup>3</sup> and B <sub>22</sub> = 0.0015 (MW) <sup>-1</sup> Find the power generation of both plants and load connected, when $\lambda = 25$ Rs./ MWh. | [10] |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4 | a) | Explain the constraints for Unit Commitment solution method.                                                                                                                                                                                                                                                                                                                                                                                     | [10] |
|   | b) | What are the advantages of dynamic programming method?                                                                                                                                                                                                                                                                                                                                                                                           | [5]  |
| 5 | a) | Describe the necessity of keeping frequency constant.                                                                                                                                                                                                                                                                                                                                                                                            | [5]  |
|   | b) | Obtain the mathematical modeling of speed governing system.                                                                                                                                                                                                                                                                                                                                                                                      | [10] |
| 6 | a) | Obtain the mathematical modeling of tie line power in an interconnected system and its block diagram.                                                                                                                                                                                                                                                                                                                                            | [8]  |
|   | b) | Two generating stations A and B have the capacities 400MWand 700MW respectively are inter-connected by a short line. The percentage speed regulations from no-load to full load of the two stations are 2 and 3 respectively. Find the power generation at each station and power transfer through the line if the load on bus of each station is 200MW.                                                                                         | [7]  |
| 7 |    | Explain the combined load frequency control and economic dispatch control with neat block diagram.                                                                                                                                                                                                                                                                                                                                               | [15] |
| 8 | a) | What are the advantages and disadvantages of different types of compensating equipment for transmission systems?                                                                                                                                                                                                                                                                                                                                 | [8]  |
|   | b) | What is the need of flexible alternating current transmission system in now a days?                                                                                                                                                                                                                                                                                                                                                              | [7]  |

2 of 2