

Code No: **RT41274**

www.FirstRanker.com

www.FirstRanker.com

[8]

[12]

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 PETROLEUM RESERVOIR ENGINEERING - II

(Petroleum Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

PART-A (22 Marks)

1.	a)	Write the initial and boundary conditions for semi steady state flow conditions	[4]
	b)	What is CRD analysis? Give its applications in well testing	[4]
	c)	Explain about pressure buildup analysis	[4]
	d)	What is an infinite aquifer?	[3]
	e)	What is One dimensional displacement?	[4]
	f)	Write a short note on CBM	[3]

PART-B (3x16 = 48 Marks)

2.	a)	Explain about Bron's Pressure build up analysis by defining each expressions	[8]
	b)	Briefly explain about Isochronal test in gas wells with neat sketches.	[8]

3.	a)	Derive the basic differential equation in flow through porous medium	[8]
	b)	Discuss about CRAWFORD SOLUTION TECHNIQUE in detail	[8]

Estimate the production rate of a gas well when the average reservoir pressure is 2728 psia and the flowing wellbore pressure is maintained at 2660 psia. The following reservoir and fluid properties are known:

k= 5 md, h= 35 ft., rw= 0.5 ft., re= 2640 ft., $\mu= 0.018 \text{ cp}$, z= 0.87, $T= 200 ^{\circ} \text{F}$, s = -0.3, D = 0.015 (MMSCF/day)⁻¹

b) Explain the importance of injection well testing in detail [8]

Using the Fetkovich method, calculate the water influx as a function of time for the following reservoir-aquifer and boundary pressure data:

What is the effect of non-Darcy (turbulent) flow on well performance?

 $Pi = 2760 \text{ psi}, h = 100 \text{ ft}, ct = 7 \times 10^{-6} \text{ psi} - 1, \mu w = 0.55 \text{ cp}, k = 200 \text{ md}, \theta = 0.56 \text{ cp}$ 140° Reservoir area = 40.363 acres, aguifer area = 1.000000 acres.

Time, days	P _r , psi
0	2740
365	2510

0	2740
365	2510
1095	2119
1460	1949

b) Write a brief note on steam soaking [4]

6.	a)	Derive the fractional flow equation for oil displacement	[8]
	b)	Explain about Displacement in stratified reservoir.	[8]

- 7. a) Derive the material balance equation for conventional gas reservoirs [8]
 - b) Explain about Tight gas reservoirs in detail [8]