

www.FirstRanker.com

www.FirstRanker.com

Max. Marks: 75

Code No: **R41081**

IV B.Tech I Semester Supplementary Examinations, February/March - 2018

TRANSPORT PHENOMENA

(Common to Chemical Engineering and Petroleum Engineering)

Time : 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1	a)	Write a note on Eyring theory of viscosity of liquids.	[4]
	b)	Define the terms convective mass flux and molecular mass flux.	[4]
	c)	Define momentum flux and determine the same, when the lower plate velocity is 2ft/s in the positive z-direction. The plate separation is 0.002 ft and the fluid viscosity is 0.7 cp.	[7]
2	a) b)	Derive the expression for velocity and momentum balance distribution for the upward flow in a cylindrical annulus. A power law fluid flows through a circular pipe in a laminar flow under a pressure gradient. Derive the equation for momentum flux and velocity distribution.	[8] [7]
3	a)	Compare and contrast forced and free convection heat transfer.	[5]
	b)	Heat flows through an annular wall of inside radius R_o and outside radius R_1 . The thermal conductivity of the wall varies linearly with the temperature from k_o at T_o to k_1 at T_1 . Derive an expression for heat flow through the wall using shell energy balance.	[10]
4	a) b)	Define Thiele modulus and diffusion controlled reaction. Consider a simple model for a catalytic reactor, in which a reaction $2A \rightarrow B$ is being carried out. Assume that each catalyst particle is surrounded by a stagnant gas film through which A has to diffuse to each the catalyst surface. At the catalyst surface assume that the reaction $2A \rightarrow B$ occurs instantaneously, and that the product B then diffuses back out through the gas film to the main turbulent stream containing A and B.	[3]
5	a)	Explain substantial derivative with the help of an example.	[3]
	b)	Equation of motion is a 'statement of Newton's second law of motion'. Prove the statement from the first principles of writing conservation of momentum balance for a fluid flowing in random direction through a volume element of size $\nabla x \nabla y \nabla z$.	[12]
6		A fluid whose viscosity is to be measured is placed in the gap of thickness B between the two disks of radius R. The upper disk is rotated with a torque τ at an angular velocity of Ω . Develop the formula for the calculation of viscosity. Use equation of motion to solve the problem.	[15]

1 of 2

www.FirstRanker.com

www.FirstRanker.com

Code No: **R41081**

- 7 A semi-infinite slab occupying space from y = 0 to $y = \alpha$ is initially at temperature T_0 . At time t = 0, the surface at y = 0 is suddenly raised to T_{α} and maintained at that temperature. Derive the equations for (a) temperature distribution (b) thermal boundary layer (c) heat flux at y = 0. [15]
- 8 a) What is time smoothing? Explain and give its significance. [9]b) Write a note on Prandtl mixing length theory. [6]

www.firstRanker.com

2 of 2