

www.FirstRanker.com

Code No: **RT41025 R13**

Set No. 1

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 INSTRUMENTATION

(Common to Electrical and Electronics Engineering and Mechanical Engineering)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

1.	a) b)	PART-A (22 Marks) How are Instrumental Errors different from gross Errors? Explain. Differentiate between active and passive transducers.	[4] [4]
	c)d)	Define the following terms. (i) Guage Pressure (ii) Absolute Pressure (iii) Differential Pressure State the advantages of a DVM over an analog meter.	[4] [3]
	e) f)	State the advantages of using a probe. Define Wave analyzer. List different types of wave analyzers.	[3] [4]
		$\underline{\mathbf{PART}} - \underline{\mathbf{B}} \ (3x16 = 48 \ Marks)$	
2.	a)	The expected value of the voltage across a resistor is 80 V. However the measurement gives a value of 79 V. Calculate (i) absolute error, (ii) % error	FO1
	b)	(iii) Relative accuracy and (iv) % of accuracy. What do you understand by dynamic characteristics of an Instrument? Define	[8]
	0)	Speed of response, Fidelity, Lag, Dynamic Error.	[8]
3.	a)	Define Strain guage and guage factor. Describe the operation and construction of strain guage. State its limitations.	[8]
	b)	Define Thermocouple. List various types of thermocouples. With neat diagram explain the operation of Thermocouple.	[8]
4.	a) b)	Explain the measurement of linear displacement through capacitive transducer. Explain how a load cell is employed to measure static and dynamic forces.	[8] [8]
5.	a)	What is meant by Voltmeter sensitivity? Explain its relevance in circuit	
	b)	applications. Explain how a PMMC can be used as a basic voltmeter.	[8] [8]
6.	a) b)	Explain how frequency can be measured by a CRO using lissajous figures. Explain with a diagram how frequency can be measured using spot wheel method and gear wheel method.	[8]
			[8]
7.		Explain how Q-meter can be used to measure the following. (i) dc resistance of a coil	
		(ii) Stray Capacitance(iii) Impedance of a circuit	
		(iv) Characteristics impedance of a transmission line	[16]

1 of 1

www.FirstRanker.com

Code No: **RT41025 R13**

Set No. 2

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 INSTRUMENTATION

(Common to Electrical and Electronics Engineering and Mechanical Engineering)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

		$\underline{\mathbf{IAK1-A}}$ (22 Marks)	
1.	a)	The following values are obtained from the measurements of the value of a	
		resistor: 147.2, 147.4, 147.9, 147.1, 147.5, 147.6, 147.4, 147.6, 147.5. Calculate	
		(i) Arithmetic mean (ii) Average deviation and (iii) Standard Deviation	[4]
	b)	Define transducer. Explain the difference between primary sensors and	
		transducers with the help of examples.	[4]
	c)	Define Pressure. What are different methods of Pressure measurement?	[4]
	d)	State the advantages of a dual slope DVM over a ramp type DVM.	[4]
	e)	Define intensity, focus, and astigmatism.	[3]
	f)	What are the applications of Wave analyzer?	[3]
		PART-B (3x16 = 48 Marks)	
2.	a)	Explain gross errors and systematic errors in detail. How can it be minimized?	[8]
	b)	With relevant diagrams explain the concept of Sampled data pulse modulation.	[8]
3.	a)	Explain with the help of a diagram and characteristics the operation of LVDT.	[8]
	b)	Explain the method of measuring displacement using LVDT. State the	
		advantages and disadvantages of LVDT.	[8]
4.		Describe the principle of operation of a pressure transducer employing each of	
		the following principles:	
		(i) Resistive transducer (ii) Inductive transducer	[16]
5.	a)	How a basic D' Arsonal movement is converted into multirange voltmeter?	
		Explain it using neat diagram.	[8]
	b)	A $3\frac{1}{2}$ digit of DVM has an accuracy of ± 0.5 percent of reading ± 1 digit.	
	ĺ	(i) What is the possible error in volt, when the instrument is reading 5.00 V on	
		the 10 V range.	
		(ii) What is the possible error in volt, when reading 0.1 V on the 10 V range.	[8]
6.	a)	Discuss the features of CRT.	[8]
	b)	Draw the block diagram of sampling oscilloscope and explain its functional	
	- /	operations and give various waveforms at each block.	[8]
			r. J
7.	a)	Explain with a diagram the operation of a frequency selective wave analyzer.	[8]
	b)	With neat sketches explain the concept of Harmonic distortion analyzer.	[8]

www.FirstRanker.com

Set No. 3

Code No: **RT41025 R13**

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 INSTRUMENTATION

(Common to Electrical and Electronics Engineering and Mechanical Engineering)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	List different types of Errors.	[3]
	b)	What do you understand by electrical transducers? State the advantages of an	
		Electrical transducer.	[4]
	c)	What are the main elements of velocity transducer?	[4]
	d)	Name the types of instruments used for making voltmeter and ammeter.	[3]
	e)	List the major components of a CRT.	[4]
	f)	Define Distortion. Define harmonics and the term 'total harmonic distortion'.	[4]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	What do you understand by static characteristics? List the different types of static	
		characteristics. Define the terms: Instrument, accuracy, precision, Resolution,	
		sensitivity and errors.	[8]
	b)	With relevant diagrams explain the concept pulse code modulation.	[8]
3.	a)	Explain with diagram the functions of a resistive transducer.	[8]
	b)	Explain with a diagram the operation of a piezo-electric transducer.	[8]
	ĺ		
4.	a)	Draw the experimental setup of measuring force using piezo- electric crystal.	[8]
	b)	Show with an example how the capacitive transducer has excellent frequency	
		response.	[8]
5.	a)	Explain with a neat block diagram of a dual slope digital voltmeter.	[8]
	b)	Explain with neat diagram the operation of a Microprocessor based DVM. State	
		the advantages of a microprocessor based DVM.	[8]
6.	a)	Draw the basic block diagram of an oscilloscope and explain the functions of	
		each block.	[8]
	b)	State the various applications of an oscilloscope.	[8]
7.	a)	Explain with help of a block diagram the operation of a spectrum analyzer.	[8]
	b)	Explain with a diagram the working of a vector impedance meter.	[8]

www.FirstRanker.com

Code No: **RT41025 R13**

Set No. 4

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 INSTRUMENTATION

(Common to Electrical and Electronics Engineering and Mechanical Engineering)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

		<u>FARI-A</u> (22 Marks)	
1.	a)	What do you mean by a Standard? What is the significance of standard?	[4]
	b)	List the factors to be considered while selecting a transducer.	[4]
	c)	What are the uses of Piezo- electric transducers?	[4]
	d)	State the effects of using a voltmeter of low sensitivity.	[3]
	e)	Compare Dual beam and Dual Trace CRO.	[4]
	f)	State the applications of a spectrum analyzer	[3]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	What are the different types of errors that occur during measurement? Explain	
		each.	[8]
	b)	Draw the block diagram of the measuring system and explain the function of	
		each stage of this system.	[8]
3.	a)	Explain the working principle of Thermistors.	[8]
	b)	Describe different types of Thermistor. State advantages and disadvantages of	
		Thermistors and state the various applications of a thermistor.	[8]
4.		Explain with the help of a diagram the method of measurements of displacement	
		using change in self inductance due to	
		(i) Change in number of turns	
		(ii) Change in permeability	
		(iii) Change in reluctance	[16]
5.	a)	Explain the operating principle of a Ramp type DVM.	[8]
	b)	List out some important features like operating and performance characteristics	[~]
	-,	of digital voltmeter.	[8]
6.	a)	State the standard specifications of a simple CRO.	[8]
0.	a) b)	Draw the block diagram of a basic horizontal amplifier and explain it.	[8]
	0)	Draw the block diagram of a basic northonial amplifier and explain it.	[O]
7.	a)	Describe with a diagram the operation of a heterodyne wave analyzer.	[8]
	b)	Differentiate Wave analyzer and harmonic distortion analyzer.	[8]