

Code No: **RT41041**

www.FirstRanker.com

www.FirstRanker.com

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 VLSI DESIGN

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Compare CMOS, Bipolor, BiCMOS technologies?	[4]
	b)	Write a note on the general observation about design rules.	[3]
	c)	Explain the criteria for choice of layers.	[4]
	d)	Draw the typical architecture of PLA.	[3]
	e)	Write a short note on SoC Design.	[4]
	f)	List the applications of FPGA.	[4]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	What are the steps involved in the nMOS fabrication? Explain with neat sketches.	[8]
	b)	Derive the relationship between drain to source current I_{ds} verses drain to source	[~]
		voltage V_{ds} in non-saturated and saturated region.	[8]
3.	a)	What is a stick diagram? Draw the stick diagram and layout for a CMOS	
	,	inverter.	[8]
	b)	Explain about double poly CMOS rules.	[8]
4.	a)	Explain the concept of sheet resistance and apply it to compute the ON resistance	
		(VDD to GND) of an NMOS inverter having pull up to pull down ratio of 4:1, If	
		n channel resistance is Rsn =104 Ω per square.	[8]
	b)	What is inverter delay? How delay is calculated to for multiple stages?	[8]
5.	a)	Explain switch logic and its arrangements? And also explain properties of	
		transmission gate.	[8]
	b)	Discuss the general arrangement of a 4-bit arithmetic process.	[8]
~	`		101
6.	a)	Explain the importance of package selection.	[8]
	b)	Explain the importance of design for testability.	[8]
7.	a)	Explain about building block architecture of FPGA.	[8]
	b)	Explain the design flow using FPGA.	[8]
	- /	r · · · · · · · · · · · · · · · · · · ·	r.,1

1 of 1

www.FirstRanker.com

www.FirstRanker.com

Code No: **RT41041**

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 VLSI DESIGN

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Define threshold voltage of a MOS device and explain its significance.	[4]
	b)	Explain how stick diagrams can be used for layout diagrams.	[3]
	c)	Write short notes on area capacitances of layers.	[4]
	d)	Explain a four line Gray code to Binary code converter.	[4]
	e)	Write a short note on mixed signal design.	[3]
	f)	List out the steps in FPGA design flow.	[4]

<u>PART-B</u> (3x16 = 48 Marks)

2.	a)	Explain the processing steps used in IC fabrication process.	[8]
	b)	Derive the expression for the ratio between Zp.u and Zp.d if an nMOS inverter is	
		to be driven from another nMOS inverter.	[8]
3.	a)	Design a stick diagram for inverter using CMOS.	[8]
	b)	Design a layout diagram for CMOS 3-input NAND gate.	[8]
	`		501
4.	a)	Explain scaling of MOS circuits. Give merits and demerits of scaling.	[8]
	b)	Describe three sources of wiring capacitances. Explain the effect of wiring	
		capacitance on the performance of a VLSI circuit.	[8]
5.	a)	Discuss about Two-phase clocking in detail.	[8]
	b)	With an example, Explain about system design.	[8]
6.	a)	Discuss the VLSI design issues and design trends.	[8]
	b)	Explain the ASIC design flow.	[8]
7.	a)	Write the VHDL code to implement stack.	[8]
	b)	Explain the architectural features of FPGA.	[8]

1 of 1

Code No: **RT41041**

www.FirstRanker.com

www.FirstRanker.com

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 VLSI DESIGN

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

[4]
[3]
[3]
[4]
[4]
[4]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	With neat sketches explain BICMOS fabrication in an n-well process.	[8]
	b)	Explain and derive the expressions for MOS transistor parameters g_m , g_{ds} and ω_0 .	
			[8]
3.	a)	Design a layout for CMOS 2-input NOR gate.	[8]
	b)	Write a short note on 2µm Double Metal, Double Poly, CMOS/BiCMOS rules.	[8]
			501
4.	a)	Explain constituents of wiring capacitance.	[8]
	b)	What are the limits on logic levels and supply voltage due to noise in scaling?	[8]
5.	a)	Explain bus arbitration logic for n-line bus structured design approach.	[8]
	b)	Realize the 2-i/p NOR gate using NMOS, PMOS and CMOS technologies.	[8]
6.	a)	Discuss about design for testability in VLSI design.	[8]
	b)	Draw and explain the FPGA design flow.	[8]
7.	a)	Explain implementation of queue using VHDL	[8]
	b)	Write the VHDL code to implement four bit shift register.	[8]
	- /	\mathbf{r}	r - 1

Code No: **RT41041**

www.FirstRanker.com

www.FirstRanker.com

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 VLSI DESIGN

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Explain the Latch-up effect in CMOS circuits with suitable diagrams.	[4]
	b)	Draw the circuit diagram for CMOS two-input NOR gate.	[3]
	c)	Write short notes on realization of gates using CMOS technology.	[4]
	d)	Explain a four-bit dynamic shift register.	[4]
	e)	List out the steps in FPGA design flow.	[3]
	f)	Write about configuration modes.	[4]

<u>PART-B</u> (3x16 = 48 Marks)

2.	a)	Explain the structures of n MOS enhancement mode, depletion mode and p-MOS enhancement mode transistors.	[8]
	b)	Draw and explain the operation of BiCMOS inverter.	[8]
3.	a)	What is a stick diagram and explain about different symbols used for components	
		in stick diagram.	[8]
	b)	Design a stick diagram and layout for the CMOS logic shown below.	
		$Y = \overline{(AB) + (CD)}$	[8]
4.	a)	Realize basic gates using NMOS.	[8]
	b)	Explain scaling factors for device parameters.	[8]
5.	a)	Explain the structured design approach of parity generator.	[8]
	b)	Explain the design of a 4-bit shifter.	[8]
6.	a)	Explain the stuck at fault model with example.	[8]
	b)	Explain about the clocking mechanism.	[8]
7.	a)	Explain the FPGA design process.	[8]
	b)	Explain the concept of sheet resistance.	[8]

1 of 1