

Code No: **RT41026**

R13

Set No. 1

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 NON CONVENTIONAL SOURCES OF ENERGY

(Open Elective)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

Define and briefly explain day length and surface azimuth angle. [4] 1. a) Describe the collector efficiency curve of the flat-plate collector. b) [4] If the saturation current is 10^{-8} Am⁻², calculate and draw the I-V characteristic as a graph to 0.2 V. [3] A large wind turbine has a blade diameter of 100 m, at what rotor speed (frequency) will the tip-speed exceed the speed of sound? [4] Briefly describe how the wave energy is extracted from different devices. [4] e) Describe in brief the profile of hot dry rock system for calculating heat content. [3]

$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$

2. a) Estimate the monthly average daily global radiation using Kleen's recommendation, on a horizontal surface at New Delhi (28°38' N, 77°17' E) during the month of April if the average sunshine hours per day are 9.5. Use the relation.

$$\hat{H}_g / \hat{H}_0 = a + b (\hat{S} / S_{\text{max}})$$

- \hat{H}_{g} = Monthly average of the daily global radiation on horizontal surface at a location in kJ/m²-day
- \hat{H}_0 = Monthly average of the daily global radiation on a horizontal surface at the same location on a clear sky in kJ/m²-day
- \hat{S} = Monthly average sunshine hours per day at the location in hour
- $S_{\text{max}} = \text{Maximum day length a, b, are constants by fitting data, given as 0.25 and } 0.45 respectively. [8]$
- b) Explain how the solar radiation is determined on tilted surface for Indian conditions. [8]
- 3. a) Describe the operation of non-convective solar pond for the solar energy collection and storage. [8]
 - b) Derive the relation for transmittance coefficient for the series of glass covers in flat plate collector.

[8]

Code No: **RT41026 R13**

\sim .	- -	
N'At		
Set	No.	

4. a)		Draw the I-V characteristics of PV cell and describe the system configuration for maximum power extraction from PV system.			
	b)	Explain step-by-step procedure of perturb & observe method of maximum power point technique.	[8]		
	a)	a) Briefly describe cut-in speed and cut-out speed in wind energy conversion system.	[6]		
	b)	Explain maximum power point tracking procedure in a wind energy conversion system.	[10]		
6.	a)	Explain how head and flow is measured in small hydro power conversion? Describe its e energy equation.	[10]		
	b)	Briefly describe the principle and limitations of tidal power generation?	[6]		
7.	a) b)	Briefly explain the different types of bio-gas plants with its schematic diagrams. Describe the importance of earthquakes and volcanoes in the formation of	[10]		
	0)	b) Describe the importance of earthquakes and volcanoes in the formation of geothermal resources.			
		WNFilestle			