

Code No: RT4103B

R13

Set No. 1

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 ADVANCED COMPUTER AIDED ENGINEERING (MOOCS)

(Mechanical Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THEE questions from Part-B

PART-A (22 Marks)

1.	a)	Explain with a sketch plane stress and plane strain.	[4]
	b)	What is FEM? Sketch the different types of elements used based on geometry in	
		Finite Element Analysis.	[4]
	c)	List the importance of two dimensional plane stress and plane strain analysis.	[4]
	d)	Derive the mass matrix for a two noded linear element.	[4]
	e)	Write about Solution techniques for static loads.	[3]
	f)	State the significance of modal analysis.	[3]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	With the help of a neat diagram, describe the various components of stress and	
		strains.	[8]
	b)	Derive the stress-strain relationship and strain displacement elevation.	[8]
3.	a)	Distinguish between natural coordinate and volume coordinates also write their	
		mathematical analysis	[8]
	b)	List and briefly describe the general steps of the finite difference method.	[8]
1			
4.		What do you understand by finite element modeling of axi-symmetric triangular	[17]
		element using iso parametric representation?	[16]
		\mathcal{U} .	
5.	a)	Derive shape functions for one dimensional two noded bar element. Hence explain	
		the conditions for the shape function has to satisfy.	[8]
	b)	Distinguish between lower and higher order elements.	[8]
6.	a)	Explain the different types of loads used in FEM.	[8]
	b)	State the different types of constraints to be considered for finite element analysis.	[8]
_			
7.		Consider the bar in below figure 7 loaded as shown. Determine the nodal	
		displacements, element stresses, and support reactions. Solve this problem by hand	
		calculation, adopting the elimination method for handling boundary conditions.	

[16]

Figure 7