

www.FirstRanker.com

Code No: **RT42021**

R13

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

		$\underline{PARI-A}$ (22 Marks)	
1.	a)	Define the following fundamental parameters of an sample and hold element	
		(i) Acquisition time (ii) Aperture time (iii) Droop rate	[3]
	b)	Obtain the Z-transform of $x(t) = \frac{1}{a}(1 - e^{-at})$, where 'a' is a constant	[4]
	c)	Write about the Jordan canonical form.	[3]
	d)	Determine the stability of the characteristic equations by using Jury's stability	
		tests $5z^2 - 2z + 2 = 0$.	[4]
	e)	What do understand by primary strip and complimentary strips?	[4]
	f)	Enumerate the design steps for pole placement.	[4]
		$\underline{\mathbf{PART}}_{\mathbf{B}} (3x16 = 48 Marks)$	
2.	a)	Discuss the mathematical model of sample and hold operations with neat	
	• •	sketch?	[8]
	b)	Explain the conditions to be satisfied for reconstruction of sampled signal into	101
		continuous signals?	[8]
3.	a)	$(1-e^{-aT})$	
5.	a)	Given the z transform $X(z) = \frac{(1-e^{-aT})}{(z-1)(z-e^{-aT})}$ Where a is a constant and T is the	
		sampling period, determine the inverse z transform x(kT) by use of the partial	
		fraction expansion method.	[8]
	b)	The input output of a sampled data system is described by the difference	
		equation $y(k+2) + 3y(k+1) + 4y(k) = r(k)$. Determine the pulse transfer	
		function, the initial conditions are $y(0) = 0$, $y(1) = 1$.	[8]
4.		Consider the discrete control system represented by the following transfer	
		function $G(z) = \frac{1+0.8z^{-1}}{1-z^{-1}+0.5z^{-2}}$. Obtain the state representation of the system in	
		the observable canonical form. Also find its state transition matrix.	54.67
		the observable canonical form. Also find its state transition matrix.	[16]
5.	0)	How do you man constant domning losi from a plane to z plane?	[6]
5.	a) b)	How do you map constant damping loci from s-plane to z-plane? Construct the Jury stability table for the following characteristic equation	[6]
	0)	$P(z) = a_0 z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4$ Where $a_0 > 0$. Write the stability	
		$r(z) = u_0 z + u_1 z + u_2 z + u_3 z + u_4$ where $u_0 > 0$. while the stability conditions.	[10]
		conditions.	[10]

[16]

Code No: **RT42021**

R13

6. The closed loop transfer function for the digital control system is given as $\frac{C(z)}{R(z)} = \frac{z+0.5}{3(z^2-z+0.5)}$

Find the steady state errors and error constants due to step input.

7. Control a system, defined by $\dot{X} = Ax + Bu$ Y = Cx*Where* $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, It is desired to have eigen values at -3.0 and -5.0 by using a state feedback control u = -KX. Determine the necessary feedback gain matrix k and the control signal u. [16]

www.FirstRanker.com

www.FirstRanker.com

Code No: **RT42021**

R13

Set No. 2

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

		<u> </u>	
1.	a)	What are the advantages offered by digital control?	[4]
	b)	Obtain the Z-transform of $x(t) = t^2 e^{-at}$ where 'a' is constant.	[4]
	c)	Write about the observable canonical form.	[3]
	d)	Determine the stability of the characteristic equations by using Jury's stability	
		tests $z^3 - 0.2z^2 - 0.25z + 0.05 = 0$.	[4]
	e)	Write brief note on design procedure in the w-plane.	[5]
	f)	Write the sufficient condition for arbitrary pole placement.	[2]

<u>PART-B</u> (3x16 = 48 Marks)

2.	a)	State and explain the theorem required to satisfy to recover the signal e(t) from	
		the samples e*(t).	[8]
	b)	Explain how the reconstructing the input signal by hold circuits.	[8]

3. Obtain the inverse Z-transform of the following in the closed form.
(i)
$$F_1 = \frac{0.368z^2 + 0.478z + 0.154}{z^2(z-1)}$$
 (ii) $F_2 = \frac{2z^3 + z}{(z-1)^{2(z-1)}}$ (iii) $F_3 = \frac{z+2}{z^2(z-2)}$ [16]

4. a) Explain any one method of evaluation of state transition matrix. [6]

b) Investigate the controllability and observability of the following system. $\begin{pmatrix} x_1(k+1) \\ (1 -2) \begin{pmatrix} x_1(k) \\ (1 -1) \end{pmatrix} \end{pmatrix}$

$$\begin{pmatrix} x_2(k+1) \\ y_2(k) \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_2(k) \\ x_2(k) \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u(k) \\ x_2(k) \end{pmatrix}$$
[10]

- 5. a) Discuss the stability analysis of discrete control system using modified Routh stability. [8]
 - b) Using Jury's stability criterion, determine the stability of the following discrete time systems (i) $z^3 + 3.3z^2 + 4z + 0.8 = 0$ (ii) $z^3 1.1z^2 0.1z + 0.2 = 0$ [8]

www.FirstRanker.com

Code No: **RT42021**

R13

Set No. 2

6. a) Consider the transfer function system shown in figure 6(a). The sampling period T is assumed to be 0.1 sec. obtain G(w).

Figure 6 (a)

[8] [8]

- b) List out the transient response specifications and explain in brief.
- 7. A discrete time regulator system has the plant equation

$$X(k+1) = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} X(k) + \begin{bmatrix} 4 \\ 3 \end{bmatrix} u(k)$$
$$Y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} X(k) + 7u(k)$$

Design a state feedback control algorithm with u(k)=-KX(k) which places the closed loop characteristic root at $\pm j0.5$.

[16]

Code No: **RT42021**

R13

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Illustrate the step motor control system examples of discrete data control	
		systems.	[4]
	b)	Find the z-transforms of $f(t) = t \sin(\omega t)$.	[4]
	c)	State the state transition matrix.	[3]
	d)	Determine the stability of the characteristic equations by using Jury's stability	
		tests $z^4 - 1.7z^3 + 1.04z^2 - 0.268z + 0.024 = 0$.	[4]
	e)	Write the design procedure of lag compensator in w-plane.	[4]

f) What do you mean by state feedback controller?

<u>PART-B</u> (3x16 = 48 Marks)

2. a) Explain the examples of data control systems of the following

- (i) Microprocessor controlled system
- (ii) A digital computer controlled rolling mill regulating system. [8]
- b) Draw the frequency domain characteristics of zero order hold? Explain with necessary mathematical equations. [8]
- 3. a) Obtain the inverse z-transform of the following

(i)
$$X(z) = \frac{z^{-3}}{(1-z^{-1})(1-0.2z^{-1})}$$
 and (ii) $X(z) = \frac{z^{-1}(1-z^{-2})}{(1+z^{-2})^2}$ [8]

b) Write the difference equation governing the system for $G(s) = \frac{1}{s+1}$ as shown in figure.3 (b)

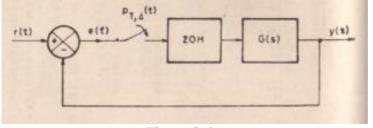


Figure.3 (b)

[8]

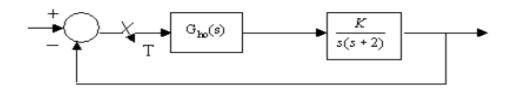
[3]

4. a) Obtain the Jordan canonical form realization for the following transfer function

$$G(z) = \frac{3z^2 - 4z + 6}{(z - \frac{1}{3})^3}.$$
[8]

b) Consider the following pulse transfer function $\frac{Y(z)}{z+0.2}$ Check this system is completely state control

 $\frac{Y(z)}{U(z)} = \frac{z+0.2}{(z+0.8)(z+0.2)}.$ Check this system is completely state controllable or not? [8]


^{1 of 2} www.FirstRanker.com

Code No: **RT42021**

R13

- Set No. 3
- 5. Consider the sample-data system shown in Figure.5 and assume its sampling period is 0.4 Sec. Find the range of K, so that the closed loop system for which stable.

[16]

- 6. The open loop transfer function of a unity feedback digital control system is given as $(z) = \frac{K(z^2+0.8z+0.5)}{(z-1)(z^2-z+0.2)}$. Sketch the root loci of the system for $0 < K < \infty$. Indicate all important information on the root loci. [16]
- 7. Consider the system defined by

$$\dot{X} = Ax + Bu$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

by using the state feedback control u = -Kx, it is desired to have the closed loop poles at $s = -2 \pm j 4$ and s = -10. Determine the state feedback gain matrix K. [16]

[8]

Code No: RT42021

R13

Set No. 4

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018

DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A

Answer any THREE questions from Part-B

PART-A (22 Marks)

1.	a)	Explain the digital controller for a turbine and generator examples of discrete	[4]
		data control systems.	
	b)	Find the z transform of $x(k) = \sum_{h=0}^{k} a^{h}$ where 'a' is a constant.	[4]
	c)	Write about the controllable canonical form.	[3]
	d)	Enumerate the conclusions from the general mapping between the s and z	
		planes by the z transform.	[4]
	e)	Write the design procedure of lead compensator in w-plane.	[4]
	f)	Write the necessary conditions for arbitrary pole placement.	[3]

<u>PART-B</u> (3x16 = 48 Marks)

2. a) Draw the magnitude and phase curves of the zero order hold and compare these curves with those of the ideal low pass filter? [8]

- b) Explain the problems encountered in reconstructing e(t) from its samples. [8]
- 3. a) By using the inversion integral method, obtain the inverse z transform of

$$X(k) = \frac{1 + 6z^{-2} + z^{-3}}{(1 - z^{-1})(1 - 0.2z^{-1})}$$
[8]

b) Write the difference equation governing the system for $G(s) = \frac{1}{s^2}$ as shown in figure.3 (b).

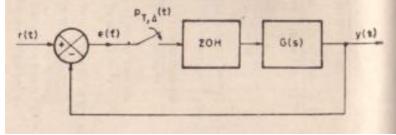


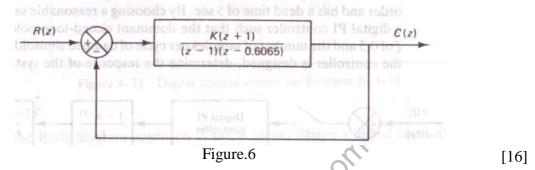
Figure.3(b)

Solution the state transition matrix of the following discrete time system

$$x(k+1) = Gx(k) + Hu(k)$$

 $y(k) = Cx(k)$ Where $G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}$, $H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$
Then obtain the state x(k) and output y(k) when the input u(k)=1 for [10]
 $k=0,1,2,...$

wwwoFirstRanker.com



Code No: **RT42021**

R13

feedback system with loop gain $F(z) = \frac{K(z-1)}{(z-0.1)(z-0.8)}$. [8]

6. Consider the digital control system shown in figure 6, plot the root loci as the gain K is varied from 0 to ∞ . Determine the critical value of gain K for stability. The sampling period is 0.1 sec, or T=0.1. What value of gain K will yield a damping ratio ζ of the closed loop poles equal to 0.5? With gain K set to yield ζ =0.5, determine the damped natural frequency ω_d and the number of samples per cycle of damped sinusoidal oscillation.

- 7. a) Discuss the necessary conditions for design of state feedback controller through pole placement.
 [9]
 - b) Prove Ackermann's formula for the determination of the state feedback gain. [7]