

www.FirstRanker.com

www.FirstRanker.com

Code No: **R42019**

IV B.Tech II Semester Supplementary Examinations, April - 2018 ADVANCED STRUCTURAL ANALYSIS

(Civil Engineering)

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

1	a) b)	Establish the stress strain relationship for isotropic materials and hence the relation between the elastic constants. State and explain the generalized Hooke's Law.	[8] [7]
2	a) b)	What is the importance of boundary condition for solving the elasticity problems? Derive the differential equations of equilibrium and compatibility equations?	[8] [7]
3	a) b)	How do you solve 2D problems of elasticity using Airy's stress function? Write the solution of bi-harmonic equation using Fourier series.	[8] [7]
4	a)	Develop the biharmonic equations in polar coordinate system and explain the procedure to solve them.	[8]
	b)	Derive the stress equations for a thick cylindrical shell of inner radius "ri" and outer radius "ro" subjected to internal pressure "P"	[7]
5	a) b)	Distinguish between static and dynamic loads. Describe the various types of dynamic loads acting on the structures. A damper offers resistance of 0.08 N at a constant velocity 0.06 m/s. The damper	[7]
	- /	is used with a spring of stiffness equal to 12 N/m. Determine the damping ratio and frequency of the system when the mass of the system is 0.3 kg	[8]
6	a)	A mass of 7 kg is attached to a spring with a stiffness of 4 N/mm. Determine the critical damping coefficient.	[7]
	b)	Find the frequency of oscillation for the floating pole of the cross section area A having a mass M at one end and the density of the pole is ρ .	[8]
7		A SDOF system is subjected to a harmonic loading defined by $P(t) = 10 \text{ Sin } \omega t$. Derive the expression for the dynamic displacement for the under damped vibrations. Sketch the response	[15]

1 of 2

www.FirstRanker.com

Code No: **R42019**

R10

Set No. 1

- 8 a) Explain about Duhamel integral.
 - b) The frame is subjected to an exciting force $F(t) = 200 \sin 20t$ as shown in figure. 8(b) below. Assuming 6% of critical damping. determine: (i) Steady state response vibration. (ii) Maximum dynamic stress in the columns

[8]

[7]

www.FirstRanker.com

2 of 2

www.FirstRanker.com