Set No. 1

IV B.Tech II Semester Supplementary Examinations, April - 2018
 AUTOMATA THEORY AND COMPILER DESIGN

(Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) Compute the equivalent DFA from NFA shown in the figure 1 (a).

Figure 1(a)
b) Explain the purpose of Lex tool.

2 a) Construct parse tree for input string $\mathrm{w}=\mathrm{cad}$ using top down parser.
$\mathrm{S} \rightarrow \mathrm{cAd}$
$\mathrm{A} \rightarrow \mathrm{ab} \mid \mathrm{a}$
b) Construct parsing table for the grammar $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{T}, \mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}| \mathrm{F}, \mathrm{F} \rightarrow(\mathrm{E}) \mid$ id and find moves made by predictive parser on input $i d+i d * i d$ and find FIRST and FOLLOW.

3 a) Generate SLR parsing table for the following grammar
$\mathrm{S} \rightarrow \mathrm{Aa}|\mathrm{bAc}| \mathrm{Bc} \mid \mathrm{bBa}$
$\mathrm{A} \rightarrow \mathrm{d}$
B \rightarrow d
And parse the sentence "bdc".
b) Explain about handle pruning? Explain its role in parsing.

4 a) Explain about S-attributes and I-attributes.
b) What is syntax tree? Explain how it is different from parse tree.
b) Explain about function overloading and operator overloading.

6 a) Explain about parameter passing.
b) Distinguish between the source text of a procedure and its activation at run time.

7 a) Explain about peephole optimization technique.
b) What are the optimization techniques applied on procedure calls? Explain with example.

Code No: R42191

Set No. 1

8 a) How to generate a code for a basic block from its dag representation? Explain.
b) Construct the DAG for the following basic block.
(i). $\mathrm{t} 1:=4 *_{\mathrm{i}}$
(ii). $\mathrm{t} 2:=\mathrm{a}[\mathrm{t} 1]$
(iii). $\mathrm{t} 3:=4{ }^{*} \mathrm{i}$
(iv). $\mathrm{t} 4:=\mathrm{b}[\mathrm{t} 3]$
(v). $\mathrm{t} 5:=\mathrm{t} 2 * \mathrm{t} 4$
(vi). $\mathrm{t} 6:=\operatorname{prod}+\mathrm{t} 5$
(vii). prod: $=$ t 6
(viii). $\mathrm{t} 7:=\mathrm{i}+1$
(ix). i $:=\mathrm{t} 7$
(x). if i $<=20$ goto (1).

