

www.FirstRanker.com

www.FirstRanker.com

Code No: R42021

Set No. 1

Max. Marks: 75

IV B.Tech II Semester Supplementary Examinations, April - 2018 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

1.	a) b) c)	Sketch the signal $x(t) = e^{-t}$ for an interval $0 \le t \le 2$. Sample the signal with a sample period T=0.2 sec and sketch the discrete time signal. Define with neat sketch (i) Periodic signal (ii) Nondeterministic signals. Whether the following signals are periodic or not. (i) $3\cos(17\pi t + \pi/3) + 2\sin(19\pi t - \pi/3)$	[4] [4]
		(ii) $u(t) - u(t - 10)$ (iii) $Cos(1/3t) + sin(1/4t)$	[7]
2.	a)	What is z-transform and its limitations? Explain the initial and final value theorems.	[7]
	b)	Find the inverse z-transforms of the following functions. $3z^2+2z+1$	
		(a) $\frac{32 + 22 + 1}{z^2 - 3z + 2}$ (b) $\frac{2^{-4}}{(z-1)(z-2)^2}$	[8]
3.	a) State and prove the sampling theorem.b) What do you mean by D/A conversion? Explain any sketch.	State and prove the sampling theorem.	[7]
		sketch.	[8]
4.	a)	The input-output of a sampled data system is described by the difference equation $y(k + 2) + 3y(k + 1) + 4y(k) = r(k + 1) - r(k)$. Determine the pulse transfer function.	[8]
	0)	$X(k+1) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(k)$ Obtain state transition matrix $w(k)$	[7]
		Obtain state transition matrix $\varphi(\kappa)$.	[/]
5.		Consider the system defined by, $\binom{x_1(k+1)}{x_2(k+1)} = \binom{a}{c} \binom{b}{a} \binom{x_1(k)}{x_2(k)} + \binom{1}{1} u(k); y(k) = (1 0) \binom{x_1(k)}{x_2(k)}$ Determine the condition on a b c and d for complete state controllability	
		and complete observability.	[15]
6.	a)	Write the necessary and sufficient conditions for jury stability test and draw the jury table.	[7]
	b)	Examine the stability of the following characteristic equation. (i) $P(z) = z^4 - 1.2z^3 + 0.07z^2 + 0.3z - 0.08 = 0$	
		$(ii) P(z) = z^3 - 1.1z^2 - 0.1z + 0.2 = 0$	[8]

www.FirstRanker.com

Code No: **R42021**

R10

[7]

- 7. A block diagram of a digital control system is shown in the figure.1 Design a compensation D(z) to meet the following specifications.
 - i) Velocity error constant, $K_v \ge 3 \sec^{-1}$
 - ii) Phase Margin $\geq 50^{\circ}$
 - iii) Band Width = 1.1 rad / sec

- 8. a) Prove Ackermann's formula for the determination of the state feedback gain matrix K.
 - b) Consider the system x(k + 1) = Gx(k) + Hu(k)

$$G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}, H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Determine a suitable state feedback gain matrix 'k' such that the system will have the closed loop poles at $z = 0.5 \pm j0.5$. [8]

