II B. Tech II Semester Supplementary Examinations, April/May - 2019
 SWITCHING THEORY AND LOGIC DESIGN
 (Com. to EEE, ECE, ECC, EIE)

Time: 3 hours
Max. Marks: 70

> Note: 1. Question Paper consists of two parts (Part-A and Part-B)
> 2. Answer ALL the question in Part-A
> 3. Answer any THREE Questions from Part-B

PART -A

1. a) What are the Universal gates? Draw the truth tables. 4 M
b) What is a Hazard in a Digital system? 3M
c) Write short note on prime implicant chart. 4M
d) List the applications of Multiplexer and Demultiplexer. 3M
e) Compare synchronous \& Asynchronous circuits. 4M
f) Compare Melay and Moore models. 4M

PART -B

2. a) Convert the following numbers to binary: 9 M
i) $(7 E B 9)_{16} \quad$ ii) $(7654)_{8}$. \quad iii) $(525.25)_{10}$
b) What is the Gray code? What are the rules to construct Gray code? Develop the $4 \quad 7 \mathrm{M}$ bit Gray code for the decimal 0 to 15 .
3. a) Simplify the following Boolean function using tabular method: 8 M $f(w, x, y, z)=\sum(2,6,8,9,10,11,14,15)$
b) Reduce the following function using K - map and implement it in AOI logic as 8 M well as NAND logic. $\mathrm{F}=\Sigma m(0,1,2,3,5,7,8,9,10,12,13)$
4. a) Design a $32: 1$ Multiplexer using two 16:1 and 2:1Multiplexers. 8 M
b) Design a circuit to convert Excess-3 code to BCD code using a 4-bit Full adder. 8M
5. a) Using PLA logic, implement a BCD to excess 3 code converter. Draw its truth 8 M table and logic diagram
b) Discuss about types of sequential PCDs.
6. a) Distinguish between a state table and a flow table?

8M
b) Draw the logic diagram and write functional table of an SR latch using NAND 8M gates. Explain the operation.
7. a) Draw the diagram of mealy type FSM for a serial adder.
b) Reduce the number of states in the following state table and tabulate the reduced state table and give proper assignment.

Present State	Next State, Z	
	$\mathbf{X = 0}$	$\mathbf{X = 1}$
\mathbf{A}	$\mathbf{F , 0}$	$\mathbf{B , 0}$
\mathbf{B}	$\mathbf{D , 0}$	$\mathbf{C , 0}$
\mathbf{C}	$\mathbf{F , 0}$	$\mathbf{E , 0}$
\mathbf{D}	$\mathbf{G}, \mathbf{1}$	$\mathbf{A , 0}$
\mathbf{E}	$\mathbf{D , 0}$	$\mathbf{C , 0}$
\mathbf{F}	$\mathbf{F , 1}$	$\mathbf{B , 1}$
\mathbf{G}	$\mathbf{G}, \mathbf{0}$	$\mathbf{H , 0}$
\mathbf{H}	$\mathbf{G}, \mathbf{1}$	$\mathbf{A , 0}$

