

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22022

SET - 1

II B. Tech II Semester Supplementary Examinations, April/May - 2019 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, ECE, ECC, EIE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B

PART –A

1.	a)	What are the Universal gates? Draw the truth tables.	4M
	b)	What is a Hazard in a Digital system?	3M
	c)	Write short note on prime implicant chart.	4M
	d)	List the applications of Multiplexer and Demultiplexer.	3M
	e)	Compare synchronous & Asynchronous circuits.	4M
	f)	Compare Melay and Moore models.	4M
	,	PART -B	
2.	a)	Convert the following numbers to binary:	9M
		i) (7EB9) ₁₆ ii) (7654) ₈ . iii) (525.25) ₁₀	
	b)	What is the Gray code? What are the rules to construct Gray code? Develop the 4	7M
		bit Gray code for the decimal 0 to 15.	
3.	a)	Simplify the following Boolean function using tabular method:	8M
		$f(w, x, y, z) = \sum (2, 6, 8, 9, 10, 11, 14, 15)$	
	b)	Reduce the following function using K- map and implement it in AOI logic as	8M
		well as NAND logic. $F=\Sigma m(0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)$	
4.	a)	Design a 32:1 Multiplexer using two 16:1 and 2:1 Multiplexers.	8M
	b)	Design a circuit to convert Excess-3 code to BCD code using a 4-bit Full adder.	8M
5.	a)	Using PLA logic, implement a BCD to excess 3 code converter. Draw its truth table and logic diagram	8M
	b)	Discuss about types of sequential PCDs.	8M
6.	a)	Distinguish between a state table and a flow table?	8M
	b)	Draw the logic diagram and write functional table of an SR latch using NAND gates. Explain the operation.	8M

1 of 2

www.FirstRanker.com

Code No: RT22022

R13

SET - 1

- 7. a) Draw the diagram of mealy type FSM for a serial adder. 8M
 - b) Reduce the number of states in the following state table and tabulate the reduced 8M state table and give proper assignment.

Present	Next State, Z	
State	X=0	X=1
Α	F,0	B,0
В	D,0	C,0
С	F,0	Е,0
D	G,1	A,0
Ε	D,0	C,0
F	F,1	B ,1
G	G,0	Н,0
Н	G,1	A,0

www.FirstRanker.com

2 of 2