

www.FirstRanker.com

www.FirstRanker.com

Code No: R1631022

R16

SET - 1

III B. Tech I Semester Supplementary Examinations, May - 2019 RENEWABLE ENERGY SOURCES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any FOUR Questions from Part-B

PART -A

<u>FARI -A</u>						
1.	a)	Define the terms: i) Altitude angle ii)Incident angle		[2M]		
	b)	What is the principle collection of solar energy used in a non-conv pond?	ective solar	[2M]		
	c)	 c) Show that a wavelength of λ = 1 μm solar radiation corresponds to an energy of 1.24 eV. Give all assumptions made. d) Define the power coefficient of a wind turbine .What usually is the maximum value of this parameter? 		[2M]		
	d)			[3M]		
	e)			[3M]		
	f)	What are the techniques suggested for maintaining bio-gas production		[2M]		
	PART -B					
2.	a)	Explain in detail, the solar radiation on tilted surfaces.		[7M]		
	b)	al to a flat 0.035'N. The ontal and is	[7M]			
3.	a) b)	How solar collectors are classified? What are the main applications Data for a flat plate collector used for heating the building are given Factor Specification Location and latitude Baroda 22^0 00 N Day and time Jan 1,11.30 to12.30(IST) Annual average intensity of solar radiation 0.5 langley/min Collector tilt latitude+ 15^0 Number of glass cover 2 Heat removal factor for collector 0.810 Transmittance of glass 0.88 Absorptance of the plat 0.90 U_L for collector 7.88W/m ²⁰ C Collector fluid temperature 60°C Ambient temperature 15°C Calcualte		[7M] [7M]		

i) Solar attitude angle ii) Incident angle iii) Collector efficiency

www.FirstRanker.com

www.FirstRanker.com

Code No: R1631022	(R16)	SET - 1

4.	a)	Discuss the step-by-step procedure to execute P & O algorithm for tracking the maximum power from the sun.	[7M]
	b)	What is the implication of cell mismatch in a solar module?	[7M]
5.	a)	Describe with a neat sketch the working of a wind energy system with main components?	[7M]
	b)	Write short notes on applications of wind energy.	[7M]
6.	a)	What are the advantages and limitations of small scale hydro electric power generation?	[7M]
	b)	A tidal power plant of the simple single basin type has a basin area of $30x10^6$ m ² . The tide has a range of 12m. The turbine, however, stops operating when the head on it falls below 3m. Calculate the energy generated in 1 filling (or emptying) process in kWh if the turbine generator efficiency is 0.73.	[7M]

7. a) Describe the classification of fuel cell. With a neat sketch explain the working of fuel cell

b) What is meant by anaerobic digestion? What are the factors that effect biodigestion? Explain briefly. [7M]