R13

SET - 1

III B. Tech II Semester Supplementary Examinations, April/May -2019
GEOTECHNICAL ENGINEERING - II
(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Explain an undisturbed sample?
b) Write the formula to determine the stability number, and explain the terms in it?
c) Based on the geometrical dimensions of a footing, what differentiates between a shallow footing and a deep footing?
d) What steps are to be taken to reduce the harmful effects of settlements?
e) What is a cyclic pile load test and its purpose?
f) Draw the different shapes of well?

PART - B

2 a) Describe with a neat sketch the wash boring method of soil exploration, including its merits and demerits?
b) An SPT was performed at a depth of 10 m in a fine sand deposit below water-table. The saturated unit weight of the soil is $18 \mathrm{kN} / \mathrm{m}^{3}$. If the observed N -value is 38 , what is the corrected N -value?

3 a) Describe the method of slices to analyse a slope?
b) Figure shows the details, of an embankment made of cohesive soil with $\emptyset=0^{0}$ and $\mathrm{c}=30 \mathrm{kN} / \mathrm{m}^{2}$. The unit weight of the soil is $18.90 \mathrm{kN} / \mathrm{m}^{3}$. Determine the factor of safety against sliding along the trial circle shown. The weight of the sliding mass is 360 kN acting at an eccentricity of 5.0 m from the centre of rotation. Assume that no tension crack develops.

4 a) Discuss the criteria for deciding the depth of foundations?
b) A circular footing is resting on a stiff saturated clay with unconfined compressive strength $=200 \mathrm{kN} / \mathrm{m}^{2}$. The depth of foundation is 2.50 m . Determine the diameter of the footing if the column load is 620 kN . Assume a factor of safety as 3.0 . The bulk unit weight of soil is $22 \mathrm{kN} / \mathrm{m}^{3}$.

5 a) Discuss the procedure to determine the safe bearing capacity and settlement from plate load test data?
b) What is the allowable load for 2.0 m square column in a dense sand $\left(\gamma=20 \mathrm{kN} / \mathrm{m}^{3}\right.$ and $\varnothing=40^{\circ}$) at a depth of 1.20 m , if the settlement is not to exceed 30 mm ? Factor of safety against shear failure is 3 . Water table is at a great depth.

6 a) Write a note on the pile dynamic formulae mentioning their limitations?
b) A group of 9 piles with 3 piles in a row were driven into soft clay extending from ground level to a great depth. The diameter and length of piles are 30 cm and 10 m respectively. The unconfined compressive strength of clay is 70 kPa . If the piles were spaced at $90 \mathrm{~cm} \mathrm{c} / \mathrm{c}$, compute the allowable load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5 .

7 a) Explain sinking of wells?
b) The subsoil at the typical pier location of a major bridge consists of medium to coarse sand $\left(\mathrm{N}_{\text {corrected }}=11\right)$ upto a depth of 6 m from bed level $(\mathrm{RL}+9.20 \mathrm{~m})$. This is underlain by 9 m thick layer of very stiff to hard sandy silty clay ($\mathrm{N}_{\text {corrected }}>30$), overlying highly weathered rock $(\mathrm{RQD}=0)$. Using Lacey's formula, calculate the maximum scour depth and determine the founding level of the well. The well diameter is 6 m .

