

Code No: RT41215

www.FirstRanker.com

Max. Marks: 70

IV B.Tech I Semester Supplementary Examinations, February - 2019 ANALYSIS OF COMPOSITE STRUCTURE (Aeronautical Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A

Answer any THREE questions from Part-B

PART-A (22 Marks)

1.	a)	Mention the assumptions made in modified Netting analysis?	[3]
	b)	Derive the number of elastic constants for the following materials:	
		(i) Anisotropic (ii) Orthotropic	[4]
	c)	Distinguish between mechanics of materials approach and elasticity approach?	[4]
	d)	What is macro mechanics? Distinguish between natural axis and arbitrary axis.	[3]
	e) f)	Distinguish between symmetric cross ply laminate and symmetric angle ply laminate. Give advantages of the maximum stress failure theory over the Tsai–Wu failure theory.	[4]
			[4]
		PART-B $(3x16 = 48 Marks)$	
2.	a)	What will you conclude if for determination of E_2 , equal strains in the fiber and	
		matrix are assumed instead of equal stresses?	[8]
	b)	The weight of the matrix is measured to be 35% of the weight of the composite.	
		What is the fiber volume fraction? The specific gravities of glass and epoxy are	
		2.58 and 1.22 respectively.	[8]
_		CO CO	
3.	a)	Show that an orthotropic material whose principal stiffnesses satisfy the	503
	• \	following relations is isotropic $Q_{11}=Q_{22}$ and $Q_{66}=\frac{1}{2}(Q_{11}-Q_{12})$.	[8]
	b)	Obtain Poisson's ratio for an off axis unidirectional composite at an angle $\theta = c \theta^0$	101
		60° to the fiber direction for a material with $E_1 = 15E_2 = 22.5G_{12}$ and $v_{12} = 0.30$.	[8]
1		Derive the longitudinal transforme and shear modulus of composites using	
4.	a)	strength of motorial approach	۲Ø٦
	b)	Strength of material approach. Explain in detail the electicity approach of EPD laminated composites	[0] [8]
	0)	Explain in detail the elasticity approach of FKF familiated composites.	[0]
5		Explain the following	
5.		(a) Transformation of geometric axes	
		(b) Biaxial strength theories	[16]
		(b) Dianai sublight moories.	[10]
6.	a)	What is an angle ply lamina? What are its specific features?	[8]
	b)	List out the assumptions followed in the derivation of classical lamination	r.1
	,	theory? Write the procedure for deflection analysis of laminated plates.	[8]
7.	a)	Reduce the Tsai–Wu failure theory for an isotropic material with equal ultimate	
		tensile and compressive strengths and a shear strength that is 40% of the	
		ultimate tensile strength.	[8]
	b)	Discuss about buckling of rectangular laminated plates.	[8]

1 of 1