www.FirstRanker.com

Code No: RT41014

R13
Set No. 1

IV B.Tech I Semester Supplementary Examinations, February - 2019 WATER RESOURCES ENGINEERING - II

(Civil Engineering)

Max. Marks: 70

Question paper consists of Part-A and Part-B
 Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

PART-A(22 Marks)

1. a) What is sprinkler irrigation? What are the conditions favouring sprinkler irrigation?
b) Distinguish between Kennedy's theory and Lacey's theory.
c) What are the objectives of river training?
d) What is a weir and barrage? Distinguish between them.
e) Differentiate between: (i) elementary profile and practical profile of gravity dam and (ii) low and high gravity dams
f) Draw a neat diagram of zoned embankment. Describe the functions of each component.

PART-B(3x16 = 48 Marks)

2. a) What is water logging? Explain ill effects and control measures of water logging.
b) A water course has a culturable commanded area of 1500 hectares. The intensity of irrigation of crop A is 50% and for B is 40%. Crop A is a Kharif crop and crop B is a Rabi crop. Crop A has a kor period of 21 days and crop B has kor period of 14 days. Calculate the discharge of the water course if the kor depth for crop A is 15 cm and for B it is 20 cm .
3. a) Design an irrigation channel to carry 45 cumecs of discharge. Take silt factor as 1.1 and side slope as $1 / 2: 1$. Also determine the longitudinal slope.
b) Design a lined canal to carry a discharge of $180 \mathrm{cu} . \mathrm{m} / \mathrm{s}$ on a slope of 1 in 2200.

The maximum permissible velocity is $1.8 \mathrm{~m} / \mathrm{s}$ and rugosity coefficient is 0.012 in Manning's formula and the side slope is $1.25 \mathrm{H}: 1 \mathrm{~V}$.
4. a) Design an aqueduct for the following data.

Canal: (i) full supply discharge $=35$ cumecs (ii) Full supply level $=200.00 \mathrm{~m}$ (iii) Canal bed level $=198.5 \mathrm{~m}$ (iv) Depth of water $=1.5 \mathrm{~m}$, (v) Bed width $=22$ m (vi) Side slope $=1.5: 1$, Drainage: (i) High flood discharge $=350$ cumecs, (ii) High flood level $=196.5 \mathrm{~m}$ (iii) Bed level $=193.5 \mathrm{~m}$ (iv) General ground level $=199.0 \mathrm{~m}$, Take Manning's rugosity coefficient as 0.015 and Lacey's silt factor as 1.0. Assume any other data needed suitably.
b) What are the functions of cross-regulator and head-regulator?

Code No: RT41014

5. a) Explain Khosla's method of independent variables. How do you apply corrections for interference of piles and inclination of floor?
b) Discuss the causes of failures of weirs on permeable foundations and suggest suitable control measures for each type of failure.
6. a) Classify various types of dams. Discuss the factors that affect the selection of type of dam.
b) Discuss the modes of failures and criteria for structural stability of gravity dams.
7. a) Explain the method of stability analysis of downstream slope during steady seepage.
b) Discuss briefly various types of energy dissipaters that are used for energy dissipation below overflow spillway, under different relative positions of TWC and JHC.
