

Code No: RT42023B

www.FirstRanker.com

www.FirstRanker.com

Max. Marks: 70

IV B.Tech II Semester Regular/Supplementary Examinations, April/May - 2019 **DIGITAL SIGNAL PROCESSING** (Electrical and Electronics Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

		PART-A (22 Marks)	
1.	a)	What are the basic elements of Digital Signal Processing? Explain.	[4]
	b)	Give the Relation between Z-transform and DFS.	[3]
	c)	What are the applications of FFT algorithm?	[4]
	d)	Give the equations specifying the following windows. (a) Rectangular window	
		(b) Hamming window	[4]
	e)	What is decimation by factor D? Explain with an example.	[3]
	f)	What are the flags in the status registers?	[4]
•	``	$\underline{PART-B} (3x16 = 48 \text{ Marks})$	
2.	a)	Check whether the following systems are whether linear, Stable and Invariant or not.	501
	1 \	(1) $y(n)=x^{-1}(n)$ (1) $y(n)=n x(n) + x^{-1}(n-2)$	[8]
	b)	Determine the response of Second order Discrete Time system governed by the	
		difference equation $y(n)-2y(n-1)-3y(n-2) = x(n)+4x(n-1)$, $n \ge 0$, When the input	
		signal is $x(n) = 2^n u(n)$, and with initial conditions $y(-2)=0, y(-1)=5$.	[8]
3.	a)	Prove the following properties related to DFT.	
		(i) Complex conjugate (ii) Circular correlation	[8]
	b)	Consider a sequence $x(n) = \{2, -1, 1, 1\}$ and $T = 0.5$ compute its DFT and	
		compare it with its DTFT.	[8]
4.	a)	Compute the 8-point DFT of the sequence $x(n) = 1, 0 \le n \le 7$	
		0, otherwise	
		by using DIF algorithm.	[8]
	b)	What are the differences and similarities between DIT and DIF FFT algorithms?	[8]
5.	a)	Explain the design of FIR filters using windows.	[8]
	b)	Design a Butterworth high pass filter satisfying the following specifications.	
		$\alpha_p = 1 \ dB; \ \alpha_s = 15 \ dB$	
		$\Omega_n = 0.4 \Pi; \ \Omega_s = 0.2 \Pi$	[8]
		μ, , ,	
6.	a)	What is the significance of multi rate signal processing and its applications?	[8]
	b)	With necessary derivations explain the operation of sampling rate conversion by	[~]
	- /	a factor of L in both frequency and time domains.	[8]
			[~]
7.	a)	Draw and explain the architecture of TMS 320C5x processor.	[8]
	b)	Explain the following terms in Pipelining: (i) Interlocking. (ii) Branching effect.	[8]

1 of 1