

www.FirstRanker.com

www.FirstRanker.com

(R13)

III B. Tech I Semester Supplementary Examinations, May- 2018 CONTROL SYSTEMS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation

Engineering)

Time: 3 hours

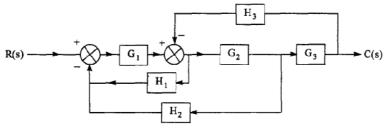
Code No: RT31043

Max. Marks: 70

SET - 1

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in **Part-A** is compulsory


3. Answer any THREE Questions from Part-B

(Normal and semi & polar graph sheet are to be supplied)

PART –A

1	a)	Explain the limitations of closed loop system over open loop system.	[3M]
	b)	Explain the advantages of signal flow graph over block diagram representation.	[4M]
	c)	What are Effects of proportional integral systems?	[4M]
	d)	What are effects by adding poles in the root locus?	[4M]
	e)	Define gain margin?	[4M]
	f)	What is Obsevability?	[3M]
PART -B			

- 2 a) Explain the temperature control system concepts using open loop as well as closed [8M] loop systems
 - b) What is signal flow graph and explain the steps to reduce the system flow graph using [8M] mason gain formulae.
- 3 a) Derive the transfer function of field controlled DC Servo motor. [8M]
 - b) Obtain the transfer function C(s)/R(s) by using Block diagram algebra for the figure [8M] given below:

- 4 a) For unity feedback system having open loop transfer function as [8M] $G(s) = \frac{K(s+2)}{s^2(s^2+7s+12)}$. Determine error constants K_p, K_v and K_a?
 - b) A unity feedback control system has an open loop transfer function, $G(s) = \frac{10}{s(s+2)}$ [8M] Find the rise time, percentage overshoot, peak time and settling time for a step input of 12 units.

1 of 2

www.FirstRanker.com

www.FirstRanker.com

Code No: RT31043

- 5 a) The characteristics equation of feedback control system is [8M] $S^3 + 3KS^2 + (K+2)S + 4 = 0$. determine the range of K for which system is stable.
 - b) Plot the root locus pattern of a system whose forward path transfer function is [8M] $G(s) = \frac{K(S+1)}{s^2(s+2)}$
- 6 a) Find the Gain margin and phase margin of the system if the open loop transfer [8M] function is $G(s) = \frac{5}{S(S+2)}$
 - b) The open loop transfer function of a feedback control system is given by [8M] $G(s)H(s) = \frac{K}{S^2+S-2}$ Plot the Nyquist plot and show that the closed loop system is stable if ≥ 2 .
- 7 a) What is lag compensator?

b) A unity feedback system has an open loop transfer function, $G(s) = \frac{K}{S(1+2S)}$ [12M] .design a suitable lag compensator so that phase margin is 40⁰ and the steady state error for ramp input is less than or equal to 0.2.

