

www.FirstRanker.com

Code No: H8703/R13

M. Tech. II Semester Regular/ Supplementary Examinations, July-2016

STABILITY OF STRUCTURES

(Structural Engineering)

Ti	me:	3 Hours Max. Marks: 60	
		Answer any FIVE Questions All Questions Carry Equal Marks	
1.		Find the maximum bending moment of a simply supported beam-column of span 'l' subjected to a concentrated load 'W' at its mid-span and an axial compressive load 'P'.	12
2.		Derive the expression for buckling of a bar under distributed axial load from first principles.	12
3.	a b	Explain the various assumptions made in the double modulus theory. Explain the inelastic buckling of a column with built-in ends subjected to axial load.	4 8
4.	a	Explain the non-uniform torsional buckling of thin walled members of open cross- section.	6
	b	Explain the behavior of member of thin-walled open cross-section subjected to combined torsion and flexure.	6
5		Determine the lateral buckling moment of resistance of a beam of I-section subjected to pure bending.	12
6.	a	Determine the buckling load of an axially loaded fixed-free column using Rayleigh-Ritz method	8
	b	Explain the effect of initial curvature on the buckling of columns.	4
7.	а	Explain the orthogonal relation of buckling problems.	6
0	b	Explain the factors influencing the lateral buckling of beams.	6
8.		Explain the following:	4
	a b	Inelastic buckling of columns. Mathematical treatment of stability problems	4
	c	Effect of shear on critical load of columns	4
