www.FirstRanker.com

Code No: G5614/R13

M. Tech. I Semester Supplementary Examinations, January-2017 MODERN CONTROL THEORY

(Common to PSC\&A, EPE, EPS, PE, P\&ID, PE\&ED, PE\&D, EM\&D, PE\&PS, and APS)

Time: 3 hours
Max. Marks: 60

Answer any FIVE Questions
 All Questions Carry Equal Marks

1. a Explain the concept of state?
b A system is described by the state equation
$\dot{x}(t)=A x(t)+B u(t) ; x(0)=x^{0} ; y(t)=c x(t)$
where $A=\left[\begin{array}{ccc}-5 & -4 & 2 \\ 3 & 3 & -2 \\ 0 & 2 & -2\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1 \\ 0 & 2\end{array}\right], c=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$. Draw state diagram?
2. a Explain the physical significance of the concept of controllability and observability?
b Discuss observability canonical forms of state model?
3. a Describe the controllability tests for continuous time invariant systems.
b Consider a system satisfying the differential equations
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}2 & 0 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right] u$.
Is this system controllable?
4. a Explain the popular nonlinearities.
b List out the properties of nonlinear systems.
5. a Derive the describe function of relay with dead zone.
b Describe the stability analysis of Non-Linear systems through describing functions. [7]
6. a Explain the concept of singular point.
b Consider the system described by the following equation: $\ddot{x}+\dot{x}+x^{3}=0$. Given
the initial conditions $x(0)=1, \dot{x}(0)=0$, construct the trajectory starting at the initial point.
7. a What are the different types of stability? Define and explain each of them with examples.
b Suppose you are given a linear continuous time autonomous system, how do you decide whether a system is globally asymptotically stable?
8. For the system $\dot{x}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right] x$ find a suitable Lyapunov function $\mathrm{V}(\mathrm{x})$. Find an upper bound on time that it takes the system to get from the initial condition $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ to within the area defined by $x_{1}^{2}+x_{2}^{2}=0.1$.
