

www.FirstRanker.com

Code No: I8205/R16

M. Tech. I Semester Regular Examinations, January-2017

DETECTION AND ESTIMATION THEORY

[Common to Microwave and Communication Engg (82), DECS (38), ECE (70), DECE (37) And Communication Systems (47)]

Max. Marks: 60

Answer any FIVE Questions All Questions Carry Equal Marks			
2.	a b	Find the digital filter diagram and the state model of an ARMA (3, 1) model. Define and derive an expression for noise equivalent bandwidth of a filter.	6M 6M
3.	a b	What is Minimum Probability of Error? Explain Baye's decision rule. Explain the operation of a Correlation receiver for detecting deterministic signals corrupted by additive white Gaussian noise and derive an expression for decision threshold.	6M 6M
4.	a b	Mathematically explain the operation of scalar kalman filter. Explain the implementation of digital wiener filter.	6M 6M
5.	a	Let p represent the probability that an integrated circuit is good. Show that the maximum likelihood estimator of p is N_G/n where N_G is the number of good circuits in n independent trials	6M
	b	Define the following : i. Empirical Distribution Function ii. Joint Empirical distribution Functions iii. Histograms.	6M
6.	a	i. If X is uniform (0, 10) and 20 cells are used in a histogram with 200 samples, find the bias, MSE, and normalized RMS error in the histogram.	6M
	b	 ii) Repeat part (a) if X is normal with a mean of 5 and a standard deviation of 1.5 Discuss about Baysian Estimators Maximum Likelihood estimators. 	6M
7.	а	X(n) is a stationary zero-mean Gaussian random sequence with an autocorrelation function, $R_{XX}(k)=exp(-0.2k^2)$, Show that X(n) is ergodic.	6M
	b	Explain the procedure for the Windowed or smoothed estimators of power spectral density functions. Also explain different windows used for this purpose.	6M
8.	a	If an estimated ARMA model is, $X(n) = 0.9X(n - 1) - 0.2X(n - 2) + 0.5e(n - 1) + e(n)$.find the corresponding autocorrelation function, autocorrelation coefficient, and power density	6M
	b	spectrum. Explain the Flowchart in Box-Jenkins method of estimation of random sequence models. *****	6M