

www.FirstRanker.com

Code No: J1504/R16

M. Tech. II Semester Regular Examinations, May-2017

TRIBOLOGY

(Common to Machine Design(15), Mechanical Engg. Design (14), Computer Aided Analysis & Design (16)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions All Questions Carry Equal Marks										
1.	a	In general, how many temperatures are needed to specify the viscosity of an oil and why?	4							
	b	An oil has a viscosity v at $100^{\circ}C = 23 \text{ cS}$, a viscosity index of VI = 92 and density of $\rho = 900 \text{ kg/m}^3$. What is the dynamic viscosity of this oil at $20^{\circ}C$.	8							
2.	a	Define static and dynamic load carrying capacities of a rolling contact bearing and write the corresponding equations to calculate them.	6							
	b	A taper roller bearing has a dynamic load capacity of 26 kN. The desired life for 90% of the bearings is 8000 hours and the speed is 300 rpm. Calculate the equivalent radial load that the bearing can carry.	6							
3.	a	What are different types of rolling contact bearings? Write their advantages, disadvantages and applications	6							
	b	Explain in detail the shock pulse method used for condition monitoring.	6							
4.	a	Give examples of operating conditions under which the application of hydrostatic bearings would be necessary or highly desirable.	4							
	b	The following data is given for a hydrostatic thrust bearing: Thrust load = 500 kN; Shaft speed = 720 rpm; Shaft diameter = 300 mm Film thickness = 0.15 mm; Viscosity of lubricant = 160 SUS Specific gravity =0.86; Calculate (i) Supply pressure (ii) Flow requirement in letres/min	8							
		(iii) Power loss in pumping and(iv) Frictional power loss								
5.		Draw neat sketch showing the pressure distribution in hydrostatic bearing. Derive equation for its load bearing capacity.								
6.	a	Explain the distribution of radial and axial pressure in case of hydrodynamic bearing with the help of a neat sketch	5							
	b	Explain the effect of clearance, L/D ratio, temperature, speed and minimum film thickness on the performance of hydrodynamic bearings.	7							

1 of 2

www.FirstRanker.com

Code No: J1504/R16

7. The following data is given for a 360° hydrodynamic bearing: Radial load = 30 kN; Journal diameter = 75 mm; Bearing length = 75 mm Journal speed = 3600 rpm; Radial clearance = 0.15 mm; Inlet temperature = 40° C The temperature-viscosity relationship is as follows:

T(°C)	40	41	42	43	44	45	46	47	48	49	50
z(cP)	52.5	50	47.5	45	43	41	39	37.5	36	34	33

Assume that the total heat produced in the bearing is carried by the total oil flow. The specific gravity and specific heat of the lubricant are 0.86 and $1.76 \text{ kJ/kg}^{0}\text{C}$ respectively. Calculate the power lost in friction and the requirement of oil flow.

- 8. a What are the key factors for selecting a proper seal for a bearing?
 - b Discuss about the material selection for a dry bearing.

www.FirstRanker.com

2 of 2

6

6