

www.FirstRanker.com

Code No: J4503/R16

M. Tech. II Semester Regular Examinations, May-2017 DETECTION AND ESTIMATION THEORY

(Common to SSP (45), DIP (63), CE&SP (46), IP (-), C & SP (80)

Time: 3 Hours Max. Marks			60
Answer any FIVE Questions All Questions Carry Equal Marks			
1.	a b	Explain about the procedure in detection of random signals in Noise. Explain about Gaussian Processes and point processes.	[6M [6M
2.	a b	What you understand by Composite Hypothesis Testing? Explain in detail Explain quantitatively about Minimum Probability of error criterion for the detection of signals in Noise.	[6M [6M
3.	a	Consider the problem of finding the linear fit to the data set {xi, yi}, i =1,2,,N, using the relation $y = A + Bx$. Find the MMSE estimates for A and B.	[6M
	b	With neat sketch, explain real time digital wiener filters with its mathematical analysis.	[6M
4.	a	The N observations $x[n]$, $n = 0,1,N-1$, are i.i.d. samples from a Rayleigh distribution $p(x[n];\lambda) = (x[n]/\lambda.exp(-x[n]^2/2\lambda))$ for $x[n] > 0$, and 0 otherwise. Find a sufficient statistic for estimation of λ .	[6M
	b	Define Probability Distributive and density functions and list out their properties.	[6M
5.	a b	Define auto correlation matrix of a random process and list out its properties. Define wide sense stationary random process? Explain the tests for stationary.	[6M [6M
6.	a b	Breifly explain about Test of hypothesis. Explain in detail about power special density functions.	[6M [6M
7.	a b	Explain about the estimation and detections with applications. When does the LRT test under minimum probability of error criterion become identical to that under NP criterion?	[6M [6M
8.	a b	Distinguish between Weiner and Kalman filters. What is the difference between point and interval estimators? Explain any one method of evaluating the interval estimators. *****	[6M [6M