

www.FirstRanker.com

Code No: G6806/R13

M. Tech. I Semester Supplementary Examinations, Jan/Feb-2018

DIGITAL SYSTEM DESIGN (Common to VLSI & ES, ES & VLSI, VLSID & ES, ES & VLSID, VLSI, VLSID, VLSISD, VLSI&ME, ES, DE&CS, E&CE and DECE)

Time: 3 hours

Max. Marks: 60

6M

Answei	iny FIVE Questions	
All Quest	ns Carry Equal Marks	

1.	а	Find the CAMP printout when it minimizes the following given function	6M
		$F(a, b, c, d) = \Pi M (2, 4, 9, 15)$	
	b	The cubical form of a Boolean function is given below	6M
		F = 0112 + 1002 + 1221 + 2112 Find all intersecting pairs of cubes without help of a	
		k-map.	

2.	a	What are the various programmable logic devices? Compare them	4M
	b Implement the following Boolean functions using PAL		8M
		F1 (X, Y, Z) = $\sum (1, 2, 4, 6)$ F2 (X, Y, Z) = $\sum (0, 1, 6, 7)$ F3 (X, Y, Z) = $\sum (2, 6)$	

- 3. a Draw the general structure of a CPLD and explain how a logic function can be 6M realized on CPLD with simple example.
 - b Design an ASM chart for a serial adder with accumulator and show the control 6M block diagram.
- 4. a Find all the tests to detect h SA0 and k SA1 faults by applying path sensitization 6M technique to the given circuit below.

- b List out the properties of Boolean difference method?
- 5 a Find a preset distinguishing experiment that determines the initial state of the 6M machine shown in table. Given that it cannot be initially in state E.
 - b Can you identify the initial states when the initial uncertainty is (ABCDE)? 6M

Ps	Ns, z x=0, x=1
А	B,1 A,1
В	E,0 A,1
С	A,0 E,1
D	C,1 D,1
E	E,0 D,1

www.FirstRanker.com

www.FirstRanker.com

Code No: G6806/R13

- 6. Determine the essential prime cubes for the following four variable single output 12M function using IISc algorithm f = 0200 + 1102 + 2201 + 0011 + 0010
- 7. a What are the basic building blocks of an ASM chart? Draw the ASM chart of a SR 6M flip flop.
 - b Describe briefly the various DFT schemes used in digital systems? 6M
- 8. a Discuss in detail about reduction of state tables and state assignments.
 b Explain briefly about Passport checking in CAMP algorithm with suitable example.
 6M
