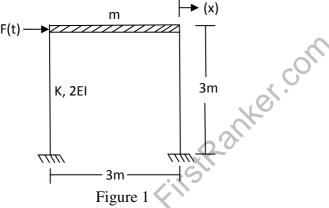


www.FirstRanker.com

Code No: G8703/R13


M. Tech. I Semester Supplementary Examinations, Jan/Feb-2018

STRUCTURAL DYNAMICS

Common to Structural Engineering (87) and Structural Design (85)

Time: 3 Hours		Max. Marks: 60	
	Answer any FIVE Questions All Questions Carry Equal Marks		
1. a b	Define dynamic and analyze the structure to a dynamic loading. How the deterministic loadings are classified and explain them.	6M 6M	
2. a b	Derive the dynamic equilibrium equation of motion. A simply supported beam of span 'l' with flexural rigidity EI is carrying a we 'W' at the centre of the span. Compute the natural frequency.	eight 6M	

3. a The frame is subjected to an exciting force F(t) = 200 sin 20t as shown in Figure 1.
6M Assuming 6% of critical damping, determine: (a) Steady state response of vibration and (b) The maximum dynamic stress in the columns.

b Derive "Duhamel's Integral"

6M

4. a The stiffness matrix and the mass matrix of a two degree freedom system are given 6M by

 $\mathbf{K} = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \qquad \text{and} \qquad \mathbf{m} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Determine the natural frequencies and corresponding modes of vibration,

- normalized with respect to the matrix such that $x^T m x = 1$.
- b Reduce the above system to a system of two independent differential equations by 6M decoupling the variables by the normal mode method.

www.FirstRanker.com

Code No: G8703/R13

5.	a	Define critical damping. If the motion is given by $12\frac{d^2x}{dt^2} + c\frac{dx}{dt} + 1.5x = 0$. Where	6M
		c=20% of critical damping, determine the damped circular frequency.	
	b		6M
6.	а	Show that the mode shapes are orthogonal with respect to stiffness matrix.	6M
	b	Explain briefly about the concept of lumped mass procedure with examples.	6M
7.	а	What is logarithmic decrement? Develop an expression for the same.	6M
	b	Write short notes on 'Approximate solution of continuous system'	6M
8.	a	Explain "Logarithmic Decrement"	6M
	b	Explain the following in detail with examples	6M
		i) Free vibration	
		ii) Forced vibration	

iii) Degrees of freedom

r***