Code No : 16801/R16

M. Tech. I Semester Regular/Supple Examinations, Jan/Feb-2018

DIGITAL SYSTEM DESIGN
(Common to VLSI\&ES, ES\&VLSI, VLSID\&ES, ES\&VLSID, VLSI, VLSID, VLSISD, VLSI\&ME, ES, DE\&CE, DE\&CS, E\&CE, C\&CE, C\&C and I\&CS)

Time: $\mathbf{3}$ hours
Max. Marks: 60

Answer any FIVE Questions
 All Questions Carry Equal Marks

1. Minimize the following switching function using CAMP Algorithm.
$f(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(1,3,5,7,9,10,13,14,15)$
2. Determine the Essential Prime Cubes for the following four variable single output function using IISc Algorithm.
$f=0200+1102+2201+0011+0010$
3. Find a simple column PLA folding of the following SSR Table and draw the folded PLA.

Columns	SSR
A	14
B	1,3
C	$3,4,5,9,12$
D	$1,2,5,10,11,15$
E	$2,4,7,8,10,15,16$
F	$1,2,15$
G	$6,8,11,13$
H	$3,5,6,14,15$
I	$7,10,12,13,16$
J	$4,9,16$

4. Determine the minimal test set to detect various faults for a given PLA which is having four inputs ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ and x_{4}), two outputs (z_{1} and z_{2}) and five product terms ($p_{1}, p_{2}, p_{3}, p_{4}$ and p_{5}) The functions realized are

$$
\begin{aligned}
& \mathrm{Z}_{1}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3} \\
& \mathrm{Z}_{1}=\mathrm{x}_{1}{ }^{1} \mathrm{x}_{3}{ }^{1}+\mathrm{x}_{3}{ }^{1} \mathrm{x}_{4}+\mathrm{x}_{1} \mathrm{x}_{3} \\
& \mathrm{Z}_{2}=\mathrm{p}_{2}+\mathrm{p}_{4}+\mathrm{p}_{5} \\
& \mathrm{Z}_{2}=\mathrm{x}_{3}{ }^{1} \mathrm{x}_{4}+\mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}{ }^{1}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}
\end{aligned}
$$

5. Determine the distinguishing sequence for the following machine M by conducting adaptive distinguishing experiment.

Code No : 16801/R16

PS	Machine M	
	$X=0$	NS, Z
A	$\mathrm{D}, 0$	$\mathrm{C}, 0$
B	$\mathrm{C}, 1$	$\mathrm{D}, 1$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 0$
D	$\mathrm{A}, 0$	$\mathrm{~A}, 0$

6. A Two Level AND - OR logic circuit has two AND gates feeding one OR gate. The two AND gates realize the product terms $x_{1} x_{2}{ }^{1}, x_{2} x_{3}$ respectively. Derive the a and b tests for detecting SA1 fault on the line $\mathrm{x}_{2}{ }^{1}$. Find a minimum test set for the network shown.

7. Design a digital system with two Flip-flops E and F and one 4 bit binary counter A . The individual flip flops in A are denoted by $\mathrm{A}_{4}, \mathrm{~A}_{3}, \mathrm{~A}_{2}$ and A_{1} with A_{4} holding the most significant bit of the count. A start signal S initiates the system operation by clearing the counter A and flip flop F. The counter is then incremented by one starting from the next clock pulse and continues to increment until operations stop. Counter bits A_{3} and A_{4} determine the sequence of operations: if $\mathrm{A}_{3}=0, \mathrm{E}$ is cleared to Zero and the Count Continues. If $\mathrm{A}_{3}=1, \mathrm{E}$ is set to 1 ; then if $\mathrm{A}_{4}=0$, the count continues, but if $\mathrm{A}_{4}=1, \mathrm{~F}$ is set to one on the next clock pulse and the system stops counting.
8. Write notes on any Two of the following.
(a) ROM Design
(b) Kohavi Algorithm
(c) DFT schemes
