

www.FirstRanker.com

Code No : I6801/R16

M. Tech. I Semester Regular/Supple Examinations, Jan/Feb-2018

DIGITAL SYSTEM DESIGN

(Common to VLSI&ES, ES&VLSI, VLSID&ES, ES&VLSID, VLSI, VLSID, VLSISD, VLSI&ME, ES, DE&CE, DE&CS, E&CE, C&CE, C&C and I&CS)

Time: 3 hours

Max. Marks: 60

Answer any FIVE Questions	
All Questions Carry Equal Marks	

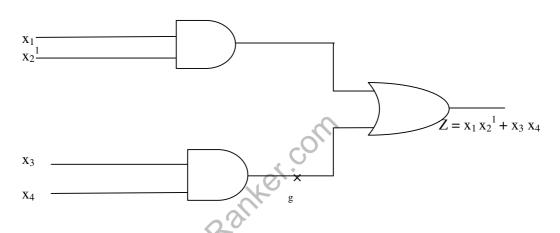
- 1. Minimize the following switching function using CAMP Algorithm. $f(a, b, c, d) = \sum m (1, 3, 5, 7, 9, 10, 13, 14, 15)$ 12M
- 2. Determine the Essential Prime Cubes for the following four variable single output function using IISc Algorithm.
 - f = 0200 + 1102 + 2201 + 0011 + 0010 12M
- 3. Find a simple column PLA folding of the following SSR Table and draw the folded PLA.

Columns	SSR
А	14
В	1,3
C	3, 4, 5, 9, 12
D	1, 2, 5, 10, 11, 15
E	2, 4, 7, 8, 10, 15, 16
F	1, 2, 15
G	6, 8, 11, 13
H	3, 5, 6, 14, 15
I	7, 10, 12, 13, 16
J J	4, 9, 16

Determine the minimal test set to detect various faults for a given PLA which is having four inputs (x₁, x₂, x₃ and x₄), two outputs (z₁ and z₂) and five product terms (p₁, p₂, p₃, p₄ and p₅) The functions realized are

 $\begin{array}{l} Z_1 = p_1 + p_2 + p_3 \\ Z_1 = x_1^{-1} x_3^{-1} + x_3^{-1} x_4 + x_1 x_3 \\ Z_{2=} \quad p_2 + p_4 + p_5 \\ Z_2 = x_3^{-1} x_4 + x_2 x_3 x_4^{-1} + x_1 x_2 x_3 \end{array}$

5. Determine the distinguishing sequence for the following machine M by conducting adaptive distinguishing experiment. 12M



www.FirstRanker.com

Code No : I6801/R16

Machine M		
PS	NS, Z	
F 5	$\mathbf{X} = 0$	X = 1
A	D, 0	C, 0
В	C, 1	D, 1
С	B, 1	A, 0
D	A, 0	A, 0

6. A Two Level AND – OR logic circuit has two AND gates feeding one OR gate. The two AND gates realize the product terms $x_1 x_2^1$, $x_2 x_3$ respectively. Derive the a and b tests for detecting SA1 fault on the line x_2^1 . Find a minimum test set for the network shown.

7. Design a digital system with two Flip-flops E and F and one 4 bit binary counter A. The individual flip flops in A are denoted by A₄, A₃, A₂ and A₁ with A₄ holding the most significant bit of the count. A start signal S initiates the system operation by clearing the counter A and flip flop F. The counter is then incremented by one starting from the next clock pulse and continues to increment until operations stop. Counter bits A₃ and A₄ determine the sequence of operations: if A₃=0, E is cleared to Zero and the Count Continues. If A₃=1, E is set to 1; then if A₄=0, the count continues, but if A₄=1, F is set to one on the next clock pulse and the system stops counting.

12M

12M

12M

- 8. Write notes on any Two of the following.
 - (a) ROM Design
 - (b) Kohavi Algorithm
 - (c) DFT schemes

2 of 2

www.FirstRanker.com