Code No: I8701/R16

M. Tech. I Semester Regular/Supple Examinations, Jan/Feb-2018 THEORY OF ELASTICITY
 (Common to Structural Engineering (87), Structural Design (85) and Computer Aided Structural Engineering (35)

Time: 3 Hours
Max. Marks: 60
Answer any FIVE Questions
All Questions Carry Equal Marks

1. Show that the line elements at the point x, y that have the maximum and minimum
rotation are those in the two perpendicular directions θ determined by

$$
\operatorname{Tan} 2 \theta=\frac{\partial \mathrm{v} / \partial \mathrm{y}-\partial \mathrm{u} / \partial \mathrm{x}}{\partial \mathrm{v} / \partial \mathrm{x}+\partial \mathrm{u} / \partial \mathrm{y}}
$$

2. a Derive expressions for compatibility for a two dimensional problems. 6
b Derive expressions for strain at a point in terms of stress components.
3. Show that $\varnothing=-\frac{\mathrm{F}}{\mathrm{d}} 3 \mathrm{xy}^{2}(3 \mathrm{~d}-2 \mathrm{y})$

Applied to the region included in $\mathrm{y}=0, \mathrm{y}=\mathrm{d}, \mathrm{x}=0$, on the side x positive.
4. a Explain Saint-Venant's principle.
b Determine the stress components and sketch their variation in a region included in
$\mathrm{Z}=0, \mathrm{Z}=\mathrm{d}, \mathrm{x}=0$ on the side x positive for the problem if plane stress satisfied by the stress function

$$
\phi=-\frac{3 \mathrm{~F}}{4 \mathrm{~d}}\left[\mathrm{xz}-\frac{\mathrm{xz}^{3}}{3 \mathrm{~d}^{2}}\right]+\frac{\mathrm{pz}^{2}}{2}
$$

5. Derive general equations in polar coordinates.
6. Show that
$€_{\mathrm{x}}=\mathrm{k}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right), \quad €_{\mathrm{y}}=\mathrm{k}\left(\mathrm{y}^{2+} \mathrm{z}^{2}\right), \quad \Upsilon_{\mathrm{xy}}=\mathrm{k}^{\prime} \mathrm{xyz}, \quad €_{\mathrm{z}}=\Upsilon_{\mathrm{xz}}=\Upsilon_{\mathrm{yz}}=0$
Where k, k ' are small constants, is not a possible state of strain.
7. The stresses in a rotating disk (of unit thickness) can be regarded as due to centrifugal force as body force in a stationary disk. Show that this body force is derivable from the potential $\mathrm{v}=-1 / 2 p \omega^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$, where p is the density and ω the angular velocity of rotation (about the origin)
8. Write short notes on following
i Homogenous deformations.
ii Stress invariants.
iii Reciprocal theorem
