

www.FirstRanker.com

Code No: I8701/R16

M. Tech. I Semester Regular/Supple Examinations, Jan/Feb-2018 THEORY OF ELASTICITY (Common to Structural Engineering (87), Structural Design (85) and Computer Aided Structural Engineering (35)

Time:	3	Hours
-------	---	-------

May Marks: 60

I me:	5 nours warks: 0	00
	Answer any FIVE Questions	
	All Questions Carry Equal Marks	
1.	Show that the line elements at the point x, y that have the maximum and minimum rotation are those in the two perpendicular directions θ determined by $Tan2\theta = \frac{\partial v/\partial y - \partial u/\partial x}{\partial v/\partial x + \partial u/\partial y}$	12
2. a b	Derive expressions for compatibility for a two dimensional problems. Derive expressions for strain at a point in terms of stress components.	6 6
3.	Show that $\phi = -\frac{F}{d}3 xy^2(3d - 2y)$ Applied to the region included in y = 0, y = d, x = 0, on the side x positive.	12
4. a b	Explain Saint-Venant's principle. Determine the stress components and sketch their variation in a region included in Z=0, Z=d, x=0 on the side x positive for the problem if plane stress satisfied by the stress function $\phi = -\frac{3F}{4d} \left[xz - \frac{xz^3}{3d^2} \right] + \frac{pz^2}{2}$	4 8
5.	Derive general equations in polar coordinates.	12
6.	Show that	12
	Where k, k' are small constants, is not a possible state of strain.	
7.	The stresses in a rotating disk (of unit thickness) can be regarded as due to centrifugal force as body force in a stationary disk. Show that this body force is derivable from the potential $v = -1/2 p \omega^2 (x^2 + y^2)$, where p is the density and ω the angular velocity of rotation (about the origin)	12
8. i ii iii	Write short notes on following Homogenous deformations. Stress invariants. Reciprocal theorem ****	4 4 4

<u>1 of 1</u>