Subject Code: MB916/R09

M B A - I Semester Regular/Supply Examinations, Dec/Jan - 2015-16

QUANTITATIVE ANALYSIS FOR BUSINESS DECISION

Time: 3 hours
Max Marks: 60
Answer any FIVE of the following
All questions carry equal marks. Q.No. 8 is compulsory

1. What are the criteria for decision making?
2. Solve the following linear programming problem?

$$
\begin{aligned}
& \text { Max } \mathrm{Z}=5 \mathrm{X}_{1}+3 \mathrm{X}_{2} \\
& \text { STC } \quad 3 \mathrm{X}_{1}+5 \mathrm{X}_{2} \leq 15 \\
& \\
& \\
& \\
& \\
& \\
& \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 10
\end{aligned}
$$

3. Solve the following assignment problem?

Machines

4. Determine the optimum strategies for the game?

B

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2
\end{aligned}\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -2 & 4 \\
-1 & 4 & 2 \\
2 & 1 & 6
\end{array}\right]
$$

5. 5 coins are tossed 3200 times and the number of heads appearing each time is noted at the end. The following results were obtained.

Number of heads	0	1	2	3	4	5
Frequency	80	590	1100	900	500	300

Subject Code: MB916/R09

6. The following data relate to radio advertising expenditures, news paper advertising expenditures and sales. Fit a regression $y=a+b_{1} x_{1}+b_{2} x_{2}$.

Radio advertising expenditure	$\left(\mathbf{X}_{\mathbf{1}}\right)$	4	7	9	12
News paper advertising expenditure $\left(\mathbf{X}_{\mathbf{2}}\right)$	1	2	5	8	
Sales	(\mathbf{Y})	7	12	17	20

7. To assess the significance of possible variation in performance in a certain test between grammar schools of city, a common test was given to a number of students taken at random from the senior $5^{\text {th }}$ class of each of the 4 schools concerned. The results are given below. Make an analysis of variance of data.

> SCHOOLS

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
8	12	18	13
10	11	12	9
12	9	16	12
8	14	6	16
7	4	8	15

8. CaseStudy:

A small project is compose of activity whose time estimated are listed in the table below.
a) Draw the project network?
b) Find the expected duration and variance for each activity, what is the expected project length?
c) Calculate the variances of the project length?
d) Where is the probability of project completion earlier than 4 weeks?

	Estimated	duration	weekly
Activity	\mathbf{a}	\mathbf{m}	\mathbf{b}
$1-2$	1	1	7
$1-3$	1	4	7
$1-4$	2	2	8
$2-5$	1	1	1
$3-5$	2	5	14
$4-6$	2	5	8
$5-6$	3	6	15

