Code No: MB1616/R16

MBA I Semester Regular/Supplementary Examinations, Jan/Feb-2018
 QUANTITATIVE ANALYSIS FOR BUSINESS DECISION

Time: 3 Hours
Max. Marks: 60

Answer Any FIVE Questions
All Questions Carry Equal Marks
Question No. 8 is Compulsory

1. a) What is Correlation? Write the significance of correlation

Calculate Karl Pearson's Coefficient of Correlation from the following data.
b)

X	39	65	62	90	82	75	25	98	36	78
Y	47	53	58	86	62	68	60	91	51	84

2. a What is Normal Distribution? Write its Properties.
b Write down the steps involved in Decision Making? Explain the Decision making under conditions of Risk- Utility as a criterion.
3. Write down the following
i. Permutations \& Combinations
ii. Baye's Theorem
iii. Big M Method
iv. Replacement Models
4. Solve the following linear programming problem by Simplex method.
$\operatorname{Max} \mathrm{Z}=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3}$
S.T.
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 430$,
$3 \mathrm{x}_{1}+2 \mathrm{x}_{3} \leq 460$
$\mathrm{x}_{1}+4 \mathrm{x}_{3} \leq 420$,
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
5.

Find an optimum solution to the following transportation problem.

Source/ Destination	D_{1}	D_{2}	D_{3}	D_{4}	Available
S_{1}	3	7	6	4	50
$\mathrm{~S}_{2}$	2	4	3	2	20
$\mathrm{~S}_{3}$	4	3	8	5	30
Demand	30	30	20	20	

FirstRanker.com

Code No: MB1616/R16

6. A Company has to assign four workers A,B,C,D to four jobs W,X,Y and Z respectively. The cost matrix is given below. Find the minimum cost of assigning the jobs.

Workers/Jobs	W	X	Y	Z
A	1000	1200	400	900
B	600	500	300	800
C	200	300	400	500
D	600	700	300	1000

7. Solve the following Game problem through Dominance.

Strategies	I	II	III
I	-5	10	20
II	5	-10	-10
III	5	-20	-20

8. A project consists of 8 activities with the following information.

Activity	Immediate Preceeder	T	T_{m}	T_{p}	
A	-	1	1	7	
B	-	1	4	7	
C	-	2	2	8	
D	A	1	1	1	
E	B	2	5	14	
F	C	2	5	8	
G	D,E	3	6	15	
H	F,G	1	2	3	

i) Draw the PERT network and find out the expected project completion time.
ii) 95% confidence of completion

