

Subject Code: MC1313/R13

M C A - I Semester Regular/Supply Examinations, Dec/Jan - 2015-16 DISCRETE MATHEMATICAL STRUCTURES AND GRAPH THEORY

Time: 3 hours Max Marks: 60

Answer any <u>FIVE</u> of the following All questions carry equal marks.

- 1. (a) Prove that $[(p \land \neg q) \rightarrow r] \rightarrow [p \rightarrow (q \lor r)]$ is a tautology.
 - (b) symbolize the following argument and check for its validity:

Lions are dangerous animals

There are lions

Therefore, there are dangerous animals.

- 2. (a) Let $X = \{1,2,3,4\}$ and $R = \{(x, y) \mid x > y\}$. Draw the graph of R and also give its matrix.
 - (b) Let $X = \{1,2,3,4,5,6,7\}$ and $R = \{(x, y) \mid x\text{-y is divisible by } 3\}$. Show that R is an equivalence relation. Draw the graph of R.
- 3. (a) Show that the functions $f(x) = x^3$ and $g(x) = x^{1/3}$ for $x \in \mathbb{R}$ are inverse of one another.
 - (b) Let $X = \{1,2,3\}$ and f,g,h and s be functions from X to X given by $f = \{(1,2),(2,3),(3,1)\}$, $g = \{(1,2),(2,1),(3,3)\}$, $h = \{(1,1),(2,2),(3,1)\}$ and $h = \{(1,1),(2,2),(3,3)\}$. Find fog, gof, fos, sog, fogos and gohos.
- 4. (a) Define group and sub group.
 - (b) A non empty subset S of G is a sub group of (G,*) iff for any pair of elements $a,b \in S$,
- 5. (a) How many committees of 5 or more can be chosen from 9 people?
 - (b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each $x_i \ge 2$?
- 6. (a) Solve the recurrence relation $a_n = a_{n-1} + f(n)$ for $n \ge 1$ by substitution method.
 - (b) Solve the recurrence relation a_n $9a_{n-1}+26$ a_{n-2} $24a_{n-3}=0$ for $n \ge 3$ with initial conditions $a_0=0$, $a_1=1$ and $a_2=10$.
- 7. (a) Define lattice and show that $(P(\{1,2,3\}), \subseteq)$ is a lattice.
 - (b) Prove that every chain is a distributive lattice.
- 8. (a) A complete graph K_n is planar iff $n \le 4$.
 - (b) Every simple planar graph is 5-colorable.
