Subject Code: MC1313/R13
 M C A - I Semester Regular/Supply Examinations, Dec/Jan - 2015-16
 DISCRETE MATHEMATICAL STRUCTURES AND GRAPH THEORY
 Time: 3 hours
 Answer any FIVE of the following All questions carry equal marks. $\star * * *$

Max Marks: 60

1. (a) Prove that $[(p \Lambda \sim q) \rightarrow r] \rightarrow[p \rightarrow(q \vee r)]$ is a tautology.
(b) symbolize the following argument and check for its validity:

Lions are dangerous animals
There are lions
Therefore, there are dangerous animals.
2. (a) Let $X=\{1,2,3,4\}$ and $R=\{(x, y) \mid x>y\}$. Draw the graph of R and also give its matrix.
(b) Let $X=\{1,2,3,4,5,6,7\}$ and $R=\{(x, y) \mid x-y$ is divisible by 3$\}$. Show that R is an equivalence relation. Draw the graph of R.
3. (a) Show that the functions $f(x)=x^{3}$ and $g(x)=x^{1 / 3}$ for $x \in R$ are inverse of one another.
(b) Let $X==\{1,2,3\}$ and f, g, h and s be functions from X to X given by $f=\{(1,2),(2,3)$, $(3,1)\}, g=\{(1,2),(2,1),(3,3)\}, \mathrm{h}=\{(1,1),(2,2),(3,1)\}$ and $\mathrm{s}=\{(1,1),(2,2),(3,3)\}$. Find fog, gof, fos, sog, fogos and gohos.
4. (a) Define group and sub group.
(b) A non empty subset S of G is a sub group of ($G, *$) iff for any pair of elements $a, b \in S$,
5. (a) How many committees of 5 or more can be chosen from 9 people?
(b) How many integral solutions are there to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20$ where each $x_{i} \geq 2$?
6. (a) Solve the recurrence relation $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{f}(\mathrm{n})$ for $\mathrm{n} \geq 1$ by substitution method.
(b) Solve the recurrence relation $a_{n}-9 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0$ for $n \geq 3$ with initial conditions $\mathrm{a}_{0}=0, \mathrm{a}_{1}=1$ and $\mathrm{a}_{2}=10$.
7. (a) Define lattice and show that $\left(\mathrm{P}(\{1,2,3\}), \subseteq_{)}\right.$is a lattice.
(b) Prove that every chain is a distributive lattice.
8. (a) A complete graph K_{n} is planar iff $n \leq 4$.
(b) Every simple planar graph is 5-colorable.

