(1). Electric force between two charges is given by F
zinc $\mathbf{R}^{\text {، }}$

(2) Electric potential energy for system of two charges $I s \geq=\begin{array}{cc}q_{2} & _- \\ 4117.0 & r_{2}\end{array}$

For $\mathbf{r}_{\mathbf{2}}=00$,
(11q2
TEE $\mathbf{o r}_{1}$
$0 p$ Electrostatic potential is $\mathbf{a}=\underline{A U}$
q
\{4II. Electric field an the axis of a dipole of moment $\mathbf{2} \bar{a}$ arQat a distance R from the centre is
$\bar{E}=\frac{2 R n}{z l-n c_{t i}\left\{R^{2}-a^{z}\right\}^{2}} \cdot I f R \gg$ athen' $_{\overline{-}}^{=} \underset{41\left(c_{0} R^{3}\right.}{\underline{I}}$
\{5\}. Electric field an the equatorial line of the dipole at a distance R from the centre is

$$
\begin{aligned}
& =\frac{3}{} \text {.ifik >atlhen } \equiv \overline{\overline{\overline{4 \oplus} \cdot R .2}} \\
& 4 \mathrm{YEE}_{\mathrm{zi}}\left(\mathrm{R}^{\mathbf{2}}+\right.
\end{aligned}
$$

(6). Torque \mathbf{t} experienced by + a short dipole kept In uniform external electric field E Is $\mathrm{i}=\mathrm{OxE}=\mathrm{pEsinCli}$)
\{711. Perpendicular deflection of a charge in a uniform electric field E after travelling a straight distance x is $y \frac{\text { clEx }^{2}}{2}$ where m is mass of the charge and vo is initial speed of perpendicular entry in the electric 2ply'
field.
(8). Electric flux $41_{\mathrm{E}}=\quad$ ES COS Area \ldots actor 5 is perpendicular to the surface area.
\{911. Gauss law ; ft dS R. Here E Is the electric field due to all the charges inside as well as outside
the Gaussian surface, while \mathbf{Q} is the net charge enclosed inside Gaussian surface.
\{10). Electric field due to in Nnitely long charged wine of linear charge density X et a perpendicular
distance RIs $E=\frac{\overline{\underline{27 g E}}{ }_{0} R}{}$
\{11]. Electric field due to sing!! layer of surface charge density is ${ }_{28}$. Field clue to oppositely
charged conducting plates is $\underline{c r}_{\text {irk }}$ between the gap but zero outhide.
g。
(12). Field dye to a uniformily charged thin spherical sheill of radio R is $E=-4=\overline{n^{2}}$ rar outside polnt for i nside points and $\mathrm{E}=\frac{}{4 \mathrm{trzr}^{2}}$ for outsithe point_

Here $p=\frac{3 Q}{47 R 3}$ Is volume charge density_and_Istatalchaige it the sphere

