

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

ELECTRIC CHARGES AND FIELDS

(1). Electric force between two charges is given by F zinc R' And F ='i where $\mathbf{E} \xrightarrow{\mathbf{i} \mathbf{P}} \mathbf{r} \xrightarrow{\mathbf{r}}$, is the electric field due to charge 41_2 (2) Electric potential energy for system of two charges Is $\mathbf{U} == \frac{qq_2}{4117.0} \mathbf{1} - \frac{1}{r_2}$ For $\mathbf{r}_2 = \frac{00}{10} \mathbf{U} \xrightarrow{(11q_2)}_{4TEE_0^{-1}}$ www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Op Electrostatic potential is
$$a_{1} = \frac{A}{q}$$

(41 Electric Teld an the axis of a dipole of moment [D 2.3#Qat a distance R from the centre is
 $\vec{E} = \frac{2Rn}{2m_{eq}(R^{2} - a^{2})^{2}}$. If R wather $\vec{E} = \int_{A}^{A} \frac{A}{41(q_{0}R^{2})}$
(3). Electric field an the equatorial line of the dipole at a distance R from the centre is
 $= \frac{2Rn}{q} \frac{2Rn}{q}$. If it is wather $\vec{E} = \frac{1}{4 + R \cdot 2}$
(6). Torque t experienced by a short dipole kept In uniform external electric field \vec{E} is
 $= \frac{2RR}{2p_{eq}}$, where m is mass of the charge in a uniform electric field \vec{E} is
 $= \frac{2RR}{2p_{eq}}$, where m is mass of the charge and vo is initial speed of perpendicular entry in the electric
field.
(8). Electric flux 41_e = E5 COS Area - actor 5 is perpendicular to the surface area.
(9). Electric flux 41_e = E5 COS Area - actor 5 is perpendicular to the surface area.
(9). Electric flux 41_e = E5 COS Area - actor 5 is perpendicular to the surface area.
(9). Electric flux 41_e = E5 COS Area - actor 5 is perpendicular to the surface area.
(9). Electric flux 41_e = E5 COS Area - actor 5 is perpendicular to the surface area.
(9). Electric flux 41_e = E for the electric field due to all the charges inside as well as outside
the Gaussian surface, while Q is the net charge enclosed inside Gaussian surface.
(10). Electric field due to is Nhitely long charged wine of linear charge density X et a perpendicular
distance R Is $= \frac{27g_{eq}R}{27g_{eq}R}$
(11). Electric field due to sing! layer of surface charge density $= \frac{1}{2} \frac{1}{$

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

