KINETIC THEORY OF GASES OIL ideal gas equation. PV \[\lambda AI' \] where 1.L is number of moles and R is gas constant Pressure exerted by Ideal gai n of arlitAirlef Is P = $\frac{1}{3} \frac{MM}{V}$ Table 2: Some Important points about molecules of eas | 12 .R. M | 1.5_ velocity | a
= | BaT
(3). Average welockw = cm | | | | | |--|------------------|---------------------------|----------------------------------|-------------------|-----------|-----------------|-----| | 41% N | Most probable ve | elocity v _{rrip} | | | | | -0m | | [41% Most probable velocity v _{rrip}] [5 Mean free path. VI.) 4/2FVECI ² Vintre = Number density and d = diarnieter ⁴ /F mellecure | | | | | | | | | Vintre = Number density and d = diarnieter '#F mellecure | | | | | | | | | Table 2: Some Important points about molecules of eas | | | | | | | | | 5 71,:i | | AID:PrniCity | i Of
degree of
freedom' | • | | ¹⁻ p | | | | ' | Monciatomic | 3 | L I 2 | 5-L. 1 | , | | | | | Diatornk | | 2 | E
Ir.4 | | | | | Linear n | nolecule ITriaLOrnIc} | | $\frac{7}{2}$ II. | Z e | 7
5 | | | | Nan ₋ lineaı | molecule {Triatornici | | 4R | 3R | 4 | | | | | | | | | 3 | J | For nniiituire of gas, molar speUtli lwat at constant Yol ti me is giwen Where ni and n) are number of moles .o.f two gases mixed together $C_{u;}$ and C_{y2} are molar specific heat .at constant wohame of 2 gas. UOISSILLIIPV MOSUOV 711 For crifili Dure of gam with n_1 , 8 n_2 moles the following relation holds true.