## FINAL NEETUG-2019 EXAMINATION <br> th

## CHEMISTRY

1. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is :[Given that 1 L bar $=100 \mathrm{~J}$ ]
$1-30 \mathrm{~J}$
25 kJ
325 J
430 J

Ans. 1
2. A compound is formed by cation C and anion A .

The anions form hexagonal close packed hcp lattice and the cations occupy $75 \%$ of octahedral voids. The formula of the compound is :-
1 c2A3
2 C3A2
3 C3A4
$4 \mathrm{C}_{4} \mathrm{~A}_{3}$

Ans. 3
3. pH of a saturated solution of CaOH 2 is 9 . The solubility product ksp of $\mathrm{CaOH}_{2}$ is :-
$10.5 \times 10^{-1}$
ñ15
$20.25 \times 10^{-10}$
$30.125 \times 10$
$40.5 \times 10$

## Ans. 1

4. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :-
110
220
330
440

Ans. 3
5. For an ideal solution, the correct option is :-
$1 \Delta_{\text {mix }} \mathrm{S}=0$ at constant T and P
$2 \Delta_{\text {mix }} V=0$ at constant $T$ and $P$
$3 \Delta_{\text {mix }} \mathrm{H}=0$ at constant $T$ and $P$
$4 \Delta_{\text {mix }} G=0$ at constant $T$ and $P$
Ans. 3
6. For a cell involving one electron $\mathrm{E}_{\text {cell }}^{1}=0.59 \mathrm{~V}$ at 298 K , the equilibrium constant for the cell reaction is :-
$\left\ulcorner\right.$ Given that $\frac{2.303 R T}{F}=0.9 \mathrm{~V}$ at T 298 K
$11.0 \times 10^{2}$

$31.0 \times 10$ | 10 | $21.0 \times 10$ |
| :--- | :--- |
| $41.0 \times 10$ |  |

Ans. 3
7. Among the following, the one that is not a green house gas is :1 nitrous oxide

2 methane 3 ozone

4 sulphur dioxide

Ans. 4

Final NEETUG-2019 Exam/--2019
14. Conjugate base for Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are:-
$1 \mathrm{OH}^{-}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$respectively
$2 \mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{F}^{-}$, respectively
$3 \mathrm{OH}^{-}$and $\mathrm{F}^{-}$, respectively
$4 \quad \mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively
Ans. 3
15. Which will make basic buffer ?

150 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25 \mathrm{~mL}$ of 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$
2100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
3100 mL of $0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of 0.1 M $\mathrm{NH}_{4} \mathrm{OH}$

4100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH
Ans. 3
16. The compound that is most difficult to protonate is:-


1 H
H
$2 \mathrm{H}_{3} \mathrm{C} \xrightarrow{\mathrm{O}} \mathrm{H}$
$3 \mathrm{H}_{3} \mathrm{C} \quad \mathrm{O} \quad \mathrm{CH}_{3}$
$4 \mathrm{Ph} \bigcirc$
Ans. 4
17. The most suitable reagent for the following conversion is :-


$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{C} \\
\mathrm{H} \\
\text { cis-2-butene }
\end{gathered}
$$

$1 \mathrm{Na} /$ liquid $\mathrm{NH}_{3}$
$2 \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, quinoline $3 \mathrm{Zn} / \mathrm{HCl}$
$4 \mathrm{Hg}^{2+} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$
Ans. 2
18. Which of the following species is not stable ?

| 1 [ iF ${ }^{2-}$ |  |
| :---: | :---: |
|  | $2[\mathrm{GeCl} 6]$ |
| $3[\mathrm{SnOH} 6]$ | $4[\mathrm{SiCl} 6]$ |

Ans. 4
19. Which of the following is an amphoteric hydroxide?

| 1 SrOH | 2 | 2 CaOH | 2 |
| :--- | :--- | :--- | :--- |
| 3 MgOH | 2 | 4 BeOH | 2 |

Ans. 4
20. The structure of intermediate $A$ in the following reaction is :-



1

$\mathrm{CH}_{3}$ 3

2

HC


4

Ans. 2
21. The manganate and permanganate ions are tetrahedral, due to

1 The ${ }_{\pi}$-bonding involves overlap of $p$-orbitals of oxygen with d-orbitals of manganese
2 There is no ${ }_{\pi}$-bonding
3 The $\pi$-bonding involves overlap of $p$-orbitals of oxygen with $p$-orbitals of managanese
4 The ${ }_{\pi}$-bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese
Ans. 1
22. For the second period elements the correct increasing order of first ionisation enthalpy is :-

```
Li< Be< B < C < N < O < F < Ne
Li<B}<\textrm{Be}<\textrm{C}<\textrm{O}<\textrm{N}<\textrm{F}<\textrm{Ne
Li<B}<\textrm{Be}<\textrm{C}<\textrm{N}<\textrm{O}<\textrm{F}<\textrm{Ne
Li< Be< B < C < O < N < F < Ne
```

Ans. 2
23. If the rate constant for a first order reaction is $k$, the time $t$ required for the completion of $99 \%$ of the reaction is given by :-
$1 \mathrm{t}=0.693 / \mathrm{k}$
$2 \mathrm{t}=6.909 / \mathrm{k}$
$3 \mathrm{t}=4.606 / \mathrm{k}$
$4 \mathrm{t}=2.303 / \mathrm{k}$

Ans. 3
24. Identify the incorrect statement related to $\mathrm{PCl}_{5}$ from the following :-
1 Three equatorial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of $120^{\circ}$ with each other

2 Two axial P-CI bonds make an angle of $180^{\circ}$ with each other

3 Axial $\mathrm{P}-\mathrm{Cl}$ bonds are longer than equatorial $\mathrm{P}-\mathrm{Cl}$ bonds
$4 \quad \mathrm{PCl}_{5}$ molecule is non-reactive
Ans. 4
25. $4 d, 5 p, 5 f$ and $6 p$ orbitals are arranged in the order of decreasing energy. The correct option is :-
$15 f>6 p>5 p>4 d 26 p>5 f>5 p>4 d$
$36 p>5 f>4 d>5 p 45 f>6 p>4 d>5 p$
Ans. 1
26. The biodegradable polymer is :-
1 nylon-6,6
2 nylon 2-nylon 6
3 nylon-6
4 Buna-S

## Ans. 2

27. Match the Xenon compounds in Column-I with its structure in Column-II and assign the correct code:-

## Column-I

a $\mathrm{XeF}_{4} \quad$ i
b $\mathrm{XeF}_{6} \quad$ ii
c $\mathrm{XeOF}_{4}$ iii
d $\mathrm{XeO}_{3}$ iv

## Code:

|  | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 1 | i | ii | iii | iv |
| 2 | ii | iii | iv | i |
| 3 | ii | iii | i | iv |
| 4 | iii | iv | i | ii |

## Ans. 2

28. Which is the correct thermal stability order for $\mathrm{H}_{2} \mathrm{E}$ $\mathrm{E}=\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$ and Po ?
$1 \mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
$\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
$\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$
Ans. 3

## Column-II

pyramidal
square planar
distorted octahedral
square pyramidal
29. The correct structure of tribromooctaoxide is :-
1

2

3

4


Ans. 1
30. An alkene " A " on reaction with $\mathrm{O}_{3}$ and $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene " A " gives " B " as the major product. The structure of product " B " is :-





Ans. 3
31. Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal M as the cofactor.

M is :
1 Be
2 Mg
3 Ca
4 Sr

Ans. 2
32. Which one is malachite from the following?
1 CuFeS 2
2 CuOH 2
$3 \mathrm{Fe}_{3} \mathrm{O}_{4}$
$4 \mathrm{CuCO}_{3} \mathrm{CuOH}_{2}$

Ans. 4

## Final NEETUG-2019 Exam/--2019

33. Which of the following series of transitions in the spectrum of hydrogen atom falls in visible region? 1 Lyman series 2 Balmer series

3 Paschen series 4 Brackett series
Ans. 2
34. The mixture that forms maximum boiling azeotrope is:

1 Water + Nitric acid
2 Ethanol + Water
3 Acetone + Carbon disulphide
4 Heptane + Octane

## Ans. 1

35. For the cell reaction
$2 \mathrm{Fe}^{3+} \mathrm{aq}+2 \mathrm{I}^{\text {ñ }} \mathrm{aq} \rightarrow 2 \mathrm{Fe}^{2} \mathrm{i} \mathrm{aq}+\mathrm{I}_{2} \mathrm{aq}$
$E_{\text {cell }}^{*}=0.24 \mathrm{~V}$ at 298 K . The standard Gibbs energy
$\Delta_{r} G^{=}$of the cell reaction is :
[Given that Faraday constant $F=96500 \mathrm{C} \mathrm{mol}^{\text {ñ1 }}$ ]

$$
\begin{array}{ll}
1 & -46.32 \mathrm{~kJ} \mathrm{~mol}^{n 1} \\
2 & -23.16 \mathrm{~kJ} \mathrm{~mol}^{\mathrm{n} 1} \\
3 & 46.32 \mathrm{~kJ} \mathrm{~mol}^{n 1} \\
4 & 23.16 \mathrm{~kJ} \mathrm{~mol}^{n 1}
\end{array}
$$

Ans. 1
36. In which case change in entropy is negative ?

1 Evaporation of water
2 Expansion of a gas at constant temperature
3 Sublimation of solid to gas
$42 \mathrm{Hg} \rightarrow \mathrm{H}_{2} \mathrm{~g}$
Ans. 4
37. Match the following :

| a Pure nitrogen | i Chlorine |
| :--- | :--- |
| b Haber process | ii Sulphuric acid |
| c Contact process | iii Ammonia |
| d Deacon's process | iv Sodium azide or |
|  |  |

Which of the following is the correct option ?

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| 1 | i | ii | iii | iv |
| 2 | ii | iv | i | iii |
| 3 | iii | iv | ii | i |
| 4 | iv | iii | ii | i |

Ans. 4
38. Which of the following is incorrect statement?
$1 \mathrm{PbF}_{4}$ is covalent in nature
$2 \mathrm{SiCl}_{4}$ is easily hydrolysed
$3 \mathrm{GeX}_{4} \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ is more stable than $\mathrm{GeX}_{2}$
$4 \mathrm{SnF}_{4}$ is ionic in nature
Ans. 1
39. The non-essential amino acid among the following is :
1 valine 2 leucine
3 alanine 4 lysine

Ans. 3
40. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The correct option about the gas and its compressibility factor $Z$ is :
$1 Z>1$ and attractive forces are dominant
$2 \quad Z>1$ and repulsive forces are dominant
$3 \mathrm{Z}<1$ and attractive forces are dominant
$4 \mathrm{Z}<1$ and repulsive forces are dominant
Ans. 3
41. Among the following, the reaction that proceeds through an electrophilic substitution is :

$$
1 \quad \mathrm{~N}_{2} \mathrm{Cl}{ }^{\mathrm{Cu}_{2} \mathrm{Cl}_{2}} \quad \mathrm{Cl}+\mathrm{N}_{2}
$$

$$
2+\mathrm{Cl}_{2} \mathrm{AlCl}_{3} \quad \mathrm{Cl}+\mathrm{HCl}
$$



4


Ans. 2
42. The major product of the following reaction is :

strong heating

1


2


3


4


## Ans. 2



