

STRUCTURE OF ATOM

(1). Vilawelength of matter wave

p H

Where,. E = Kinetic ane w

{211. Total number of nodim z n - 1

Radial nodes = n- 1-

Angular nodes • I

VOUSSIUPPYMOSUOV

(3). Number of neutrons ■ A – Z

Number of electrons in n^{th} tell a $2n^2$

Number of orbitals In subshell = 21 + 1

Number of electrons in substiell E 2 → 1)

Fils Ranker com 0). Energy. of quantum of radiation according to Planck's quantum theory

E = hv

Elin5telnr5 photoelectric qovatian.

- (7). Une spadtru rri firf hydrogen
- · = 11:6677) arri¹ where it wave number and v

Where n,

- (8). Bohr% rrr id hydrogen atom
- (2.1 Frequency of radiation absorbed or emitted during transition; v =
 - E. -E,
 - = Energy of bower energy state
- E_2 = Energy at higher energy state.
- (E4 Orbit angular momentum of an electron,

Where, n = 1, 2,

- (c) Energy of stationary stares
- $E_{r} = -2.18.1G1^{-1}$

UOISSIURV MOSUOV

KitstRanker.com

(9). Energy gap between the two orbits

Where $R_{tj} = 2.18 \ 10'$

rw = final orbit

- (10), Atomic number (2) = Number of protons In the nucleus of an atom.
 - = Number of electrons in a neutral atom
- (11). Helsenbeirg's uncertainty principle

(12). Speed of light is equal to the product of frequency and wavelength of light

(13), Hass Number IA) = Number of protons + Number of neutrons

UOISSILUPV MOSUI2V