

www.FirstPanker.com

SYSTEM OF PARTICLES AND ROTATIONAL MOTION

(1). According to the theorem of perpendicular axes moment of inertia of a body about perpendicular axis iş I = FI

, $I_{\rm v}$ are the moment of inertia of the rigid body about x. $_{\rm v}$ and 2 axes respectivelyx ard y axes lie in the plane of the body and z-axis lies perpendicular to the plane of the hcidy and passes through the point of intersection of x. and v.

{211. According to the theorem of parallel axes II = I $_{\rm c}$ + Noe

UOISSIQIPV MOSUOV

	,			_	
1211	Rod (Length LI	Perp.endicular to rod, at the m icloairrt terkre. of rnas.	CiS	MC	
				12	
			i		
{211	Circular ring [.acli115 P)	Passing through centre and		MR2	
		perroendicular the plane			
011	Circular on i Rad i1,15	Diameter	Cilia	MRa	
			X	2	
{4	arcular Disc radius R i	Perpendicular to the disc at		MR2	
		centre.	410	2	
(51	Circular Disc radius Ili	Diameter	o"-1; D	MR2	
			0"11(.1	4	
(5)	Hollow cylinder	Axis circylinder		MR2	
	{radius. Ft)		1 9 —[11112	
(711	Solid cylinder (radius	Axis of tvli rider		IVIFE2	Ag
	RI		. *		laS
					em
{all	Solid sphere (radius R)	Diameter		$\frac{2}{10}$ IA \mathbb{R}^2	AglaSem Admission
				5	nis
			www.FirstRanker.c	om	Sior
		<u> </u>			1

Axis

Figuire

Pilit

Body

- (3). Relation between moment of inertia (I) and angular momentum L is given Ery L =1 (7)
- MIL Relation between moment of inertia Wand kinetic energy of rotation Is given by

- (5). Relation between of inertia (I) and torque CO $\,=\,$
- $_{
 m IE}$. If no external torque acts on the system, the. total angular rnomtriturn of the. system remains 'unchanged $I_1ca_1 = 1_100_2$
- (7). Position vector of centre of mass of a discrete particle system

Where m is the mass of the $\,$ $\,$ particle and $\,$ $_{\mathbb{C}}\,$ i5 the position of the Particle corresponding.

 $x_{cpii} \, {}^{\bullet}_{\,\, YCM} \,$ and $!_{\,\rm cm}$ co-ordinates are

{sp. Velocity of centre of mass, %;11 $_{\mathbf{O}_{A}}=\mathbf{Erni}$

UOISSIURV MOSUOV

DC). Momentum of system, 0 =
$$|i:\rangle$$
 -F $|i|_2$ +_.._, + 0_n = (\mathbf{E} r'r' \mathbf{Ti}_{cro}

[11]. Centre of mass of continuolas mass distribution

02). Eiwen below are the positiOnS of trbtre of rrkas of sOrrIE tOrrirntitily u5t-t1 Objects_

SAID_	Object	Location of centre of mass
į.	YA	L
	*Uniform rod of length L	
ή,	yt	2R II
	. == 17 ' l	
	Uniform semicircular rind of radius R	
ill_	Y.1.	$X_{ciA} = 0, yr_{,,,,} = \frac{4R}{3rr}, z_{ppi} = 0$
	ay.	
	01) x Uniform 5ernicizcular disic of radius. Ft	
lw.	Y	'cm_ A• Ycki = A / 71 • zovi '°
	Or Uniform quarter of a ring 04 radius R	www.FirstRanker.com

UOISSIUPPVMOSUOV

www.FirstRanker.com

v.	Yl., -\\	$A_{cm} = \frac{4R}{3ir} \cdot v_{1} = \frac{4R}{311} = 10$
	01 Uniform quarter of a 'disc of radius R	
vi_		R
	ci:) x	
	Uniform spherical shell of radius R	
till.	Υ	3R Ma⊩=C'r ycivi = srzcm €
	idelk Milli	
	Uniform Spherical gf raclim R.	

(13). Head-ors col ii8iC1111

Velocity of bodies 1111 r noi after collision are

$$\vec{V}_1 = \frac{(m_1 - ern_2)}{ni_1 \ rri}^2 \ \vec{u}_1, \ \frac{rn_2(1 \ 4 \ e)}{ra_i \ rn_2} \ _2 \ _; \quad \vec{V}_2 = \left(\begin{array}{ccc} m & & u_2 \ r \\ ni_1 \ 4 \ rri & u_2 \ r \\ m_1 - l - n^1 2 \end{array} \right)^{-1}$$

Here e is coefficient of iregitution

(14). For elastic collision AKE & and e. 1, then velocities after collision are

$$\vec{v}_1 = \frac{\vec{v}_1 - \vec{v}_2}{\vec{v}_{\text{puri}_1 - \vec{v}_2}} \cdot \vec{v}_1 - \frac{\vec{v}_{\text{max}_2}}{\vec{v}_{\text{max}_1} \cdot \vec{r}_{\text{max}_2}} \cdot \vec{v}_2 = \frac{\vec{v}_{\text{max}_1}}{\vec{v}_{\text{max}_2} \cdot \vec{v}_{\text{max}_2}} \cdot \vec{v}_1 - \frac{\vec{v}_{\text{max}_2}}{\vec{v}_{\text{max}_1} \cdot \vec{v}_{\text{max}_2}} \cdot \vec{v}_1 - \frac{\vec{v}_{\text{max}_2}}{\vec{v}_{\text{max}_2} \cdot \vec{v}_{\text{max}_2}} \cdot \vec{v}_2 - \frac{\vec{v}_{\text{max}_2}}{\vec{v}_{\text{m$$

(15). For perfectly inelastic collision, = P, then velotitieS after collision are

VOUSOM VALUESION