

THERMAL PROPERTIES OF MATTER

{111. Conversion of temperature from one scale to other.

tc
$$-32$$
), & t_F = $\frac{9}{5}$ t_C-F 32

$$T = t_c + 273.15$$
, et $t_c = T-273.15$

$$t_p = 5 - 459-67_r \& T = -5 t_p 255.37$$

Where T, $t_{c'}$ #_{Fr} Stand far tern perature reading on Kelvin. Kale, Celsiv5 scale, Fa hrenheit wale respectively..

$$\{211. = 241, = 3a$$
 (Relation between a,13, y

kA(T —12)t

Where Q is the amount of heat that flows in time t across the opposite faces of a rod of length x and cross-sectlori A. T] and Tz are the temperatures of the faces in the steady state and k is the coefficient of thermal cDnductiyity of the material of the rod_

$${}_{\{14} \mathbf{Q} = {}_{\mathsf{dx}}^{(\mathsf{IT}} \mathsf{it}$$

Where dT represent the temperatur Pradication and the temperature of t

H = dQ (CIT) H is called the heat current_

411. M Coefficient of reflectivinyr is 🖝 ==

opencient 4:14 atiKirptiwity = =

transiitiwity t =

Where Q, is the radiant energy reflected, Qa is the radiant energy absorbed and Q. is the radiant energy transmitted through a surface on which (Lis the incident radiant energy

(5). !all In
$$\begin{bmatrix} 1 & 1 & 1 \\ T & T_0 \end{bmatrix}$$
 Kt

The above two equations represents Newton's law of cooling. WW, WirthESTRANKS COOL from TL to T2 in a surrounding, at temperature To_