Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech. (Civil) (Sem.-1)
 ENGINEERING MATHEMATICS-I
 Subject Code : AM-101
 Paper ID: [A0111]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write short notes on :
2. State the Euler's theorem on homogenous functions.
3. State the integral test for positive term series.
4. Find the mean square value of $\sin x$ in the interval $(0,1)$.
5. Write the Taylor's series expansion of $f\left(x_{0}+\mathrm{h}, y_{0}+\mathrm{k}\right)$ up to second order.
6. Separate the real and imaginary parts of $e^{\left(5+i \frac{\pi}{2}\right)}$.
7. If $u=x^{3}+x y$ and $v=x y$. Find $\frac{\partial(u, v)}{\partial(x, y)}$.
8. Using double integration, find the area enclosed between the curves $y^{2}=x^{3}$ and $x=y$.
9. Define Beta function and find $\beta\left(\frac{1}{2}, \frac{1}{2}\right)$.
10. Find the equations of the normal to the surface $z^{2}=4\left(1+x^{2}+y^{2}\right)$ at $(2,2,6)$.
11. Write the equation of ellipsoid and draw a rough sketch of it.

SECTION-B

2. Sketch the Polar curve $r=1+2 \sin \theta$ by giving all the salient features.
3. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$.
4. Using the method of Lagrange's, find the the minimum value of $x^{2}+y^{2}+z^{2}$, given that $x y z=a^{3}$.
5. Find the volume of solid formed by the revolution of $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$, about its base.

SECTION-C

6. Find the series radius and interval of convergence. For what value of x does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n(x+2)^{n}}{2^{n} n}$ converge (a) absolutely (b) conditionally
7. Solve by changing the order of integration $\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x$.
8. Find the equation of the cone whose vertex is $(1,2,3)$ and which passes through the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$.
9. Find the sum of trigonometric series $\sin a+x \sin (a+\mathrm{b})+\frac{x^{2}}{2!} \sin (a+2 b)+\ldots$.
