FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Roll No.						

Total No. of Questions : 09

B.Tech. (Civil) (Sem.–1) ENGINEERING MATHEMATICS-I Subject Code : AM-101 Paper ID : [A0111]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write short notes on :

- 1. State the Euler's theorem on homogenous functions.
- 2. State the integral test for positive term series.
- 3. Find the mean square value of $\sin x$ in the interval (0,1).
- 4. Write the Taylor's series expansion of $f(x_0 + h, y_0 + k)$ up to second order.
- 5. Separate the real and imaginary parts of $e^{\left(5+i\frac{\pi}{2}\right)}$.
- 6. If $u = x^3 + xy$ and v = xy. Find $\frac{\partial(u, v)}{\partial(x, y)}$.
- 7. Using double integration, find the area enclosed between the curves $y^2 = x^3$ and x = y.
- 8. Define Beta function and find $\beta\left(\frac{1}{2},\frac{1}{2}\right)$.
- 9. Find the equations of the normal to the surface $z^2 = 4(1 + x^2 + y^2)$ at (2,2,6).
- 10. Write the equation of ellipsoid and draw a rough sketch of it.

1 | M-54001

(S1)-2841

www.FirstRanker.com

SECTION-B

- 2. Sketch the Polar curve $r = 1 + 2\sin\theta$ by giving all the salient features.
- 3. If $u = \log (x^3 + y^3 + z^3 3xyz)$, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$.
- 4. Using the method of Lagrange's, find the the minimum value of $x^2 + y^2 + z^2$, given that $xyz = a^3$.
- 5. Find the volume of solid formed by the revolution of $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$, about its base.

SECTION-C

- 6. Find the series radius and interval of convergence. For what value of x does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n(x+2)^n}{2^n n}$ converge (a) absolutely (b) conditionally
- 7. Solve by changing the order of integration $\int_0^3 \int_{\sqrt{x/3}}^1 e^{y^3} dy dx$.
- 8. Find the equation of the cone whose vertex is (1,2,3) and which passes through the circle $x^2 + y^2 + z^2 = 4$, x + y + z = 1.
- 9. Find the sum of trigonometric series $\sin a + x \sin(a + b) + \frac{x^2}{2!} \sin(a + 2b) + \dots$.