\square
Total No. of Questions : 09

B.Tech. (2011 to 2017) (Sem.-1)

ENGINEERING MATHEMATICS - I
Subject Code: BTAM-101
Paper ID : [A1101]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.
5. Symbols used have their usual meanings. Statistical tables, if demanded, may be provided.

SECTION-A

Q1 a) Find the curvature at any point of the curve $y^{2}=x^{3}+8$ at $(1,3)$
b) Find the radius of curvature at any point (r, θ) of polar curve $r=a(1+\cos \theta)$.
c) Write down the formula for finding the volume of solid by revolving the area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and the line $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ and $\mathrm{y}=\mathrm{p}$ about the line $\mathrm{y}=\mathrm{p}$.
d) Find the area of ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
e) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{y^{2}-x^{2}}$ does not exist.
f) Find $\frac{\partial w}{\partial r}$ if $w=x+2 y+z^{2}, x=\frac{r}{s}, y=2 r+s^{2}, z=2 r$.
g) Write down the equation of hyperboloid of two sheet and draw its rough sketch.
h) A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+5$, where t is the time variable. Find the velocity at time $t=1$.
i) Determine whether $\vec{A}=2 x y z^{3} \hat{i}+x^{2} z^{3} \hat{j}+3 x^{2} y z^{2} \hat{\hat{k}}$ is irrotational or not?
j) State Stoke's theorem.

SECTION-B

Q2 a) Sketch the curve by considering all the salient features $y=x+\frac{1}{x}$.
b) Trace the polar curve : $\mathrm{r}=\mathrm{a}(1+\sin \theta), a>0$.

Q3
a) Find the perimeter of the circle $x^{2}+y^{2}=9$.
b) Find the surface of the solid generated by the revolution of Lemniscate $r^{2}=a^{2} \cos 2 \theta$ about initial line.

Q4 a) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$ prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial y \partial \mathrm{x}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=2 \cos 3 u \sin u$.
b) If $u=f(y-z, z-x, x-y))$, then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.

Q5 a) Expand $e^{x} \log (1+\mathrm{y})$ in. powers of x and y upto third degree.
b) Find all the local maxima and minima of the function :

$$
f(x, y)=x^{3}+y^{3}-63(x+y)+12 x y
$$

SECTION-C

Q6 a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the circle $x^{2}+y^{2}=a^{2}$ by changing into polar coordinates.
b) Evaluate the volume of the sphere $x^{2}+y^{2}+z^{2}=1$ by using triple integration.

Q7 a) If \vec{A} is vector function and Φ is a scalar function then prove that:

$$
\nabla \times(\phi \vec{A})=\phi(\nabla \times \vec{A})+(\nabla \phi) \times \vec{A}
$$

b) if $\vec{r}=x \hat{i}+y \hat{j}+z \hat{\hat{k}}$, prove taht $\nabla \cdot\left(r^{\mathrm{n}} \vec{r}\right)=(n+3) r^{\mathrm{n}}$, where $r=|\vec{r}|$.

Q8. Evaluate $\iint_{s} \vec{A} \cdot \hat{n} d s$ where $\vec{A}=12 x^{2} y \hat{i}-3 y z \hat{j}+2 z \hat{\hat{k}}$ and S is the portion of the plane $x+y+z$ $=1$ included in the first quadrant.

Q9. Verify Green's theorem for $\phi_{\mathrm{c}}\left(x y+y^{2}\right) d x+x^{2} d y$, where c is the boundary of the closed region bounded by $y=x^{2}$ and $y=x$.

