Roll No. \square
Total No. of Questions: 18

B.Tech. Only for CSE/IT (2018 Batch) (Sem.-1)
 MATHEMATICS-I
 Subject Code : BTAM-104-18
 Paper ID : [75362]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Verify Rolle's theorem for $f(x)=x(2-x) e^{\frac{3 x}{4}}$ in $(0,2)$
2. Define Beta function and show that it is symmetric
3. Obtain first three terms of Taylor's series of cosx about $x=\frac{\pi}{4}$.
4. If $A+B=\left[\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right]$ and $A-B=\left[\begin{array}{ll}3 & 1 \\ 1 & 4\end{array}\right]$ find $A B$.
5. Find rank of the matrix $\left[\begin{array}{ccc}1 & 6 & -2 \\ 2 & 2 & 1 \\ 3 & 8 & -1\end{array}\right]$.
6. State rank-nullity theorem.
7. Define range of a linear transformation.
8. Define symmetric matrix, also give suitable example.
9. Show that, If zero is an Eigen value of a matrix then it is singular.
10. In an n dimensional space every set of ' $n+1$ ' vectors is linearly dependent or independent. Justify your answer.

SECTION-B

11. a) Suppose that a function f is differentiate on $[0,1]$ and that its derivative is never zero. Using mean value theorem, Show that $f(0) \neq f(1)$
b) Evaluate the limit $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1-\sin x}{\sin x+\cos 2 x}\right)$
12. a) Evaluate the integral $\int_{2}^{\infty} \frac{2 d x}{x^{2}-x}$, if it exists.
b) Find the area of the surface generated by revolving the curve $y=2 \sqrt{ } x 1 \leq x \leq 2$ about the x -axis
13. a) Find the inverse of the matrix $\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right]$ using Gauss Jordan method.
b) Find the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$
14. Solve the following system of equations by Cramer's rule

$$
2 x-2 y+z=1, x+2 y+2 z=2,2 x+y-2 z=7
$$

SECTION-C

15. a) By giving proper reasoning determine whether S forms a subspace of Vector space V.

Operations vector addition ' + ' and scalar multiplications '.' are usual addition and scalar multiplication defined on set of polynomials of degrees less than or equal to $3\left(P_{3}\right)$ and 3-tuple space (V_{3}).

If (i) $S=\left\{p \in P_{3} \mid \operatorname{deg}(p)=3\right\}, V=P_{3}$
(ii) $S=\{(x, y, z) \mid x=3 y\}, V=V_{3}$
b) Determine whether the following are Linearly dependent or not?

$$
x_{1}=(1,2,1), x_{2}=(2,1,4), x_{3}=(1,8,-3)
$$

16. a) Let $\mathrm{V}=\mathrm{P}_{4}$, vector space formed by polynomials of degrees less than or equal to 4 under usual addition and scalar multiplication of polynomials. Find the dimension of subspace U of V, where U is

$$
S=\left\{p \in P_{4} \mid p(1)=0, p^{\prime}(0)=0\right\}
$$

b) Check whether the transformation $T: V_{3} \rightarrow V_{2}$ defined by $\mathrm{T}(x, y, z)=(x+z, x+y)$ represent a Linear transformation or not?
17. Find the Eigen values and Eigen vectors for the matrix.

$$
\left[\begin{array}{ccc}
2 & -2 & 3 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]
$$

18. a) If A is an orthogonal matrix prove that $|A|= \pm 1$
b) Define similar matrices and prove that similar matrices have same eigen values.
