B.Tech Only for CHS (2018 Batch) (Sem.-1)
 MATHEMATICS-I
 Subject Code : BTAM-106-18
 Paper ID : [75368]

Time : 3 Hrs.

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Answer briefly :
a) If $A=\left[\begin{array}{ccc}9 & 6 & 4 \\ 5 & 6 & 0 \\ 8 & 5 & 10\end{array}\right]$ and $B=\left[\begin{array}{ccc}14 & 13 & -12 \\ -1 & -9 & 10 \\ 18 & 11 & 9\end{array}\right]$ then find $\mathrm{A}+\mathrm{B}$.
b) Find the determinants of the matrix $A=\left[\begin{array}{lll}-1 & 6 & 5 \\ 7 & 0 & 6 \\ 2 & 7 & 3\end{array}\right]$.
c) Define rank of matrix.
d) Give an example of 3×3 symmetric matrix.
e) Find $\vec{v}+\vec{u}$ where $\vec{v}=(1,3,4)$ and $\vec{u}=(3,8,9)$.
f) Find eigen values of $A=\left[\begin{array}{ll}1 & 0 \\ 5 & 7\end{array}\right]$
g) What are orthogonal matrices? Give an example.
h) Find $\operatorname{div} \vec{f}$, where $\vec{f}=3 x^{2} y \hat{i}+z \hat{j}+x^{2} \hat{k}$.
i) Find curl \vec{v} where $\vec{f}=6 x^{2} y \hat{i}+2 y z \hat{j}+7 x^{2} \hat{k}$.
j) State Green's Theorem.

SECTION-B

2. a) Given that $A=\left[\begin{array}{lll}2 & 6 & 7 \\ 0 & 6 & 5 \\ 8 & 8 & 9\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 4 & 1 \\ 0 & 7 & 1 \\ 9 & 3 & 2\end{array}\right]$, is $A B=B A$?
b) Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 3 & 4 & 2 \\ 2 & 4 & 6 & 2 \\ -1 & 5 & 4 & 6\end{array}\right]$.
3. a) Using elementary transformations, find the inverse of the matrix $A=\left[\begin{array}{lll}2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3\end{array}\right]$
b) By Cramer's rule, solve the system $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$.
4. Find the eigen values and corresponding eigen vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
5. State Cayley-Hamilton theorem and verify for the matrix $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$.

SECTION - C

6. a) Find the directional derivatives of $f(x, y, z)=x y^{2}+y z^{3}$ at $(2,-1,1)$ in the direction of vector $\hat{i}+2 \hat{j}+2 \hat{k}$.
b) Show that $\operatorname{grad}(f+g)=\operatorname{grad}(f)+\operatorname{grad}(g)$ where f and g are two scalar point function.
7. a) Find the total work done in moving a particle in a force field given by $\vec{f}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}$, along the curve $x=t^{2}+1, y=2 t^{2}$ and $z=t^{3}$ from $t=1$ to $t=2$.
b) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that curl $\vec{r}=\overrightarrow{0}$.
8. If $\vec{F}=2 x^{2} y \hat{i}-y^{2} \hat{j}+4 x z^{2} \hat{k}$ and S is the closed surface of the region in the first octant bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, x=2, y=0$ and $z=0$, show that $\int_{s} \vec{F} \cdot \vec{N} d s=180$
9. Verify Green's theorem in the plane for If $\oint_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$, where C is the boundary bounded by $x=0, y=0$ and $x+y=1$.
