FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 2

Total No. of Questions : 09

## B.Tech Only for CHS (2018 Batch) (Sem.-1) MATHEMATICS-I Subject Code : BTAM-106-18 Paper ID : [75368]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

## **SECTION-A**

1. Answer briefly :

a) If  $A = \begin{bmatrix} 9 & 6 & 4 \\ 5 & 6 & 0 \\ 8 & 5 & 10 \end{bmatrix}$  and  $B = \begin{bmatrix} 14 & 13 & -12 \\ -1 & -9 & 10 \\ 18 & 11 & 9 \end{bmatrix}$  then find A+B. b) Find the determinants of the matrix  $A = \begin{bmatrix} 1 & 6 & 5 \\ 7 & 0 & 6 \\ 2 & 7 & 3 \end{bmatrix}$ .

- c) Define rank of matrix.
- d) Give an example of  $3 \times 3$  symmetric matrix.
- e) Find  $\vec{v} + \vec{u}$  where  $\vec{v} = (1,3,4)$  and  $\vec{u} = (3,8,9)$ .
- f) Find eigen values of  $A = \begin{bmatrix} 1 & 0 \\ 5 & 7 \end{bmatrix}$
- g) What are orthogonal matrices? Give an example.
- h) Find div  $\vec{f}$ , where  $\vec{f} = 3x^2y\hat{i} + z\hat{j} + x^2\hat{k}$ .
- i) Find curl  $\vec{v}$  where  $\vec{f} = 6x^2\hat{y}\hat{i} + 2y\hat{z}\hat{j} + 7x^2\hat{k}$ .
- j) State Green's Theorem.

**1** | M-75368



www.FirstRanker.com

**SECTION-B**  
2. a) Given that 
$$A = \begin{bmatrix} 2 & 6 & 7 \\ 0 & 6 & 5 \\ 8 & 8 & 9 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & 4 & 1 \\ 0 & 7 & 1 \\ 9 & 3 & 2 \end{bmatrix}$ , is  $AB = BA$ ?  
b) Find the rank of the matrix  $A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & 4 & 6 & 2 \\ -1 & 5 & 4 & 6 \end{bmatrix}$ .  
3. a) Using elementary transformations, find the inverse of the matrix  $A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3 \end{bmatrix}$   
b) By Cramer's rule, solve the system  $3x + y + 2z = 3$ ,  $2x - 3y - z = -3$ ,  $x + 2y + z = 4$ .  
4. Find the eigen values and corresponding eigen vectors of the matrix  $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ .  
5. State Cayley-Hamilton theorem and verify for the matrix  $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ .  
**SECTION - C**  
6. a) Find the directional derivatives of  $f(x,y,z) = xy^2 + yz^3$  at  $(2, -1, 1)$  in the direction of vector  $\hat{i} + 2\hat{j} + 2\hat{k}$ .  
b) Show that grad  $(f+g) = \operatorname{grad}(f) + \operatorname{grad}(g)$  where  $f$  and  $g$  are two scalar point function.  
7. a) Find the total work done in moving a particle in a force field given by  
 $\vec{f} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$ , along the curve  $x = t^2 + 1, y = 2t^2$  and  $z = t^3$  from  $t = 1$  to  $t = 2$ .  
b) If  $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ , show that  $\operatorname{curl} \vec{r} = \vec{0}$ .  
8. If  $\vec{F} = 2x^2y\hat{i} - y^2\hat{j} + 4xz^2\hat{k}$  and  $S$  is the closed surface of the region in the first octant bounded by the cylinder  $y^2 + z^2 = 9$  and the planes  $x = 0, x = 2, y = 0$  and  $z = 0$ , show that  $\int_{\frac{1}{2}}^{\frac{1}{2}} - \frac{1}{2} + \frac{1}{2$ 

9. Verify Green's theorem in the plane for If  $\oint_c \left[ (3x^2 - 8y^2) dx + (4y - 6xy) dy \right]$ , where C is the boundary bounded by x = 0, y = 0 and x + y = 1.

**2 |** M-75368

(S1)-544