

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (2011 to 2017) (Sem.-2) **ENGINEERING MATHEMATICS – II**

Subject Code: BTAM-102 Paper ID: [A1111]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

2. SECTION - B & C. have FOUR questions each.

Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.

Select atleast TWO questions from SECTION - B & C.

SECTION-A

a) Solve the differential equation: $ydx - xdy = y^2x^3dx$ 1.

b) Solve the differential equation $\frac{dy}{dx} + y = x^3y^6$ c) Solve the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$

d) Write down the general Cauchy's homogeneous equation and explain the transformation to solve this differential equation.

e) A particle is executing simple harmonic motion with amplitude 5 meters and time period 4 seconds. Find the time required by the particle in passing between points which are at distances 4 and 2 meters from the centre of force and are on the same side of it.

f) Find the rank of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 5 & 1 & 0 \\ -1 & 1 & -3 \end{bmatrix}$

g) Define Hermitian matrix.

h) Discuss the convergence of a geometric series.

i) What is meant by conditionally convergent series? Give example,

i) Find real and imaginary parts of coshz.

SECTION-B

Q2. a) Solve the Differential equation by finding an integrating factor:

$$(y^2 + x^2 + 2x)dx + 2ydy = 0$$

- b) Solve the differential equation : $y = 2px + y^2p^3$, where $p = \frac{dy}{dx}$
- Q3. a) Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x \sin x$
 - b) Solve by using variation of parameter method: $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = e^x tanx$
- If an e.m.f Esinot is applied to a circuit containing a resistance R, an inductance L and a condenser of Capacity C. The charge on the condenser at time t satisfies the equation $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = Esin\omega t.$

If $R = 2\sqrt{LC}$, solve the differential equation for q

Q5. Solve the following system of equations:

Fing system of equations:
$$\frac{d^2x}{dt^2} - 3x - 4y = 0$$

$$\frac{d^2y}{dt^2} + x + y = 0$$

$$\frac{d^2y}{dt^2} + x + y = 0$$

SECTION-C

Q6. a) For what values of λ and μ do the system of equations :

$$2x+3y+5z=9$$
, $7x+3y-2z=8$, $2x+3y+\lambda z=\mu$ have

- (i) no solution
- (ii) unique solution
- (iii) infinite many solutions

2 | M-54092 (S1)-194

- b) Find the eigen values and eigen vectors of the following matrix : $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$
- Q7. a) Discuss the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, p > 0
 - b) For what values of x does the following series converge $\sum_{n=1}^{\infty} \frac{x^n}{n}$
- Q8. a) solve the equation $(1 + x)^n = (1 x)^n$, n is any positive integer.
 - b) If $x + iy = \cosh(u + iv)$ then show that $\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 v}$
- Q9. Find the sum of the trigonometric series

$$sin\alpha + xsin(\alpha + \beta) + \frac{1}{2.1} x^2 sin(\alpha + 2\beta) + \cdots \infty$$

3 | M-54092 (S1)-194