

www.FirstRanker.com

www.FirstRanker.com

| Roll No. Total                                                   | No. of Pages : 02 |
|------------------------------------------------------------------|-------------------|
| Total No. of Questions : 09                                      |                   |
| B.Tech.(ANE)/(Aerospace Engg.) (2012 Onwards)<br>AERODYNAMICS- I | (Sem.–3)          |
| Subject Code : ANE-203                                           |                   |
| Paper ID:[A0974]                                                 |                   |
|                                                                  | Max Marka . CO    |

# Time: 3 Hrs.

### Max. Marks : 60

### INSTRUCTIONS TO CANDIDATES :

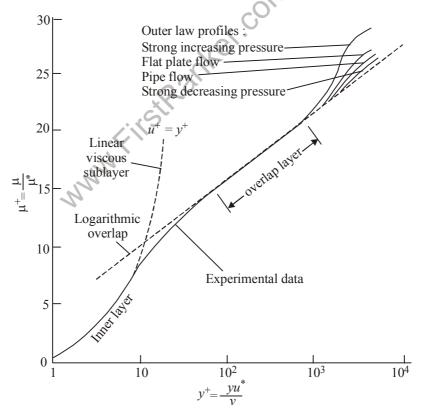
- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

## **SECTION-A**

### 1. Answer briefly :

- a) What is the use of stagnation pressure in aircrafts?
- b) Give an example of uniform flow.
- c) What is the effect of adverse pressure gradient?
- d) What is a doublet?
- e) How does the boundary layer grow?
- f) What happens to the flow in a nozzle?
- g) What is critical Reynolds's number?
- h) What is the purpose of a smoke tunnel?
- i) How can you match Mach number in wind tunnel for models?
- j) Define a streak line.




www.FirstRanker.com

# **SECTION-B**

- 2. Helium flows in a duct with a temperature of 60°C, a pressure of 2.5 bar abs., and a total pressure of 5.8 bar abs. Determine the velocity in the duct.
- 3. Describe Reynold's Transport theorem.
- 4. How do you measure the air speed in a wind tunnel with pitot tube (Not pitot static tube)?
- 5. State Karman's Integral equation.
- 6. Describe lifting and non-lifting flow around a cylinder.

## **SECTION-C**

- 7. Water flowing at the rate of  $0.05 \text{ m}^3$ /s has a velocity of 40 m/s. The jet strikes a vane and is deflected 120° Friction along the vane is negligible and the entire system is exposed to the atmosphere. Potential changes can also be neglected. Determine the force necessary to hold the vane stationary.
- 8. Air at 20°C flows through a 14-cm-diameter tube under fully developed conditions. The centerline velocity is  $u_0 = 5$  m/s. Estimate from Fig. (*a*) the friction velocity  $u^*$ , (*b*) the wall shear stress  $\tau_w$ , and (*c*) the average velocity V = Q/A



9. Derive the equation for boundary layer thickness in case of a flat plate.